“การวิเคราะห์ออปชั่นซินโดอ้างอิงกับกลุ่มสินทรัพย์โดยใช้โคปุล
การบรรยายทางวิชาการ “39 ปี ธรมศาสตร์ 39 ปี เทิมเอฟซี :
ประเด็นศึกษาด้านวิศวกรรมการเงิน”
22 มีนาคม 2553 – กรุงเทพฯ
ดร.พู่มิจ นาคสกุล
ธนาคารแห่งประเทศไทย – มหาวิทยาลัยเทคโนโลยีมหานคร
[Pricing Multi-Asset/Basket-Referenced Derivatives via Copulas]
Outline of the Presentation

I. Introduction
 - What’s a copula? Why copulas (in financial modelling)?
 - What are basket-referenced/multi-asset/multiname (credit) derivatives?

II. Methodology
 - Introduction to copulas, particularly the elliptical (e.g. Gaussian) copulas
 - Pricing credit derivatives via Monte Carlo simulation

III. Examples
 - Gaussian copula – pricing n-th-to-default CDS & CDO
 - Gaussian slug copula – results from US & Thai equity data

IV. Q&A
 - Is it really “Recipe for Disaster: The Formula That Killed Wall Street”?
I. Introduction

...
I. Introduction – what’s a copula?

- **Let’s talk mathematics.**
 - What kind of mathematical object is it?
 - A copula is a function from a hypercube to unit interval, $C: [0,1]^n \rightarrow [0,1]$, with some special properties [http://en.wikipedia.org/wiki/Copula_(statistics)].
 - Alternatively, a copula is a functional, i.e. a function of functions.
 - What does it do?
 - Recall the definitions: a univariate (cumulative) distribution function (c.d.f.), $F(x) \equiv \Pr(X \leq x)$, as well as a bivariate joint c.d.f., $F(x,y) \equiv \Pr(X \leq x \cap Y \leq y)$.
 - A bivariate copula takes 2 univariate c.d.f.’s, i.e. marginal distributions/marginals, $F_X(x) \equiv \Pr(X \leq x)$ & $F_Y(y) \equiv \Pr(Y \leq y)$ to make 1 bivariate joint c.d.f.: $C(F_X(x), F_Y(y)) = F(x,y)$.
 - To put it the other way around: a bivariate copula decomposes a bivariate joint c.d.f. into (a function of) 2 univariate c.d.f.’s — decomposition unique in case of continuous c.d.f.’s.
 - How so? **Sklar’s theorem (1959)**
I. Introduction – why copulas?

- Let’s talk probabilistic modelling.

 - Wouldn’t it be nice to be able to generalise the notion of “correlation”?
 - Whereas (statistical) independence, \(F(x, y) = F(x)F(y) \), is a singular concept, as are perfect “co-movements”, intermediate cases aren’t, and need to be defined.
 - In fact, the ubiquitous, much loved/abused, Pearson (product-moment) correlation, \(\rho \in [0,1] \), defined in terms of joint expectation, \(E[(X-\mu_X)(Y-\mu_Y) / (\sigma_X\sigma_Y)] \), is but one characterisation of “co-moving” amongst many definitions that are possible.

 - Wouldn’t it be nice to be able to model random multivariate in stages?
 (i) First model the individual random variables separately.
 (ii) Then later model how they “co-move” together.
 - With copula, not only can we break down the problem into 2 stages, we can even go ahead and perform (ii) alongside, or even ahead of, carrying out (i) first!
I. Introduction – why copulas? (2)

- Let’s talk risks.
 - Because individually, *risk drivers*,
 i.e. general (financial-economic) *risk factors*
 together w/ specific (portfolio/unhedged) *risk exposures*,
 - can be discrete,
 - are not *normally distributed*,
 - and/or otw. don’t follow *Brownian motions*.
 - Because collectively, risk drivers exhibit more general dependence structure
 - beside that which coresponds to ‘Pearson’s rho’,
 and may exhibit *asymmetry*, i.e. ‘Black Monday’,
 as well as *nonlinearity*, i.e. diminishing sensitivity.
 - Because we wish to capture *tail dependence*: \(\lim_{s \to \infty} \Pr(Y > s / X > s) \)
Let’s talk financial models.

- Multi(bi)variate normal distribution as a ‘packaged’ foundation
 - Normally distributed marginals ⇒ the ‘mu’ & ‘sigma’ vectors
 - Linear (Pearson’s) correlation ⇒ the ‘Rho’ matrix, hence our familiarity w/ such terms as positive semi-definiteness, quadratic form, Cholesky decomposition ...

- of modern finance:
 - Modern Portfolio Theory (MPT) ⇒ investment management
 - Capital Asset Pricing Model (CAPM) ⇒ financial econometrics
 - Asymptotic Single Risk Factor (ASRF) ⇒ Basel II capital standard

- If only we could …
 (i) decompose the multivariate normal distribution into a Gaussian copula + the normal marginals, then
 (ii) allow for other, i.e. non-normal, marginals?
I. Introduction – what are … derivatives?

- Let’s talk *basket-referenced/multi-asset/multiname (credit) derivatives*.
 - What is a *Credit Default Swaps (CDS)*?
 - A CDS is essentially an insurance policy written on a defined *credit event*, especially an *(obligor) default* (on loan/debt instrument).
 - What is a *1st-to-default CDS (1tD-CDS)*?
 - Likewise what are *2nd-to-default CDS (2tD-CDS), nth–to–default CDS (NtD-CDS)*?
 - What are *Collateralized Debt Obligations (CDO)*?
 - A *securitisation* device.
 - A *tranche* structure: e.g. with the *equity tranche* absorbing the first [0%-3%] of loss vis-à-vis the “collateral/asset pool”, and *mezzanine tranche, senior tranche, and super senior* absorbing, respectively, the (3%-10%), (10%-30%), and (30%-100%) portions thereafter.
 - With 1tD-CDS & CDO, pricing is effected by the degree to which individual defaults (random events) aren’t totally independent, but tied together by risk factors.
II. Methodology

...
II. Methodology – introducing Gaussian copulas

- Let’s begin with bivariate copulas
 - The notion of concordance order

 \[
 C_1 < C_2 \iff \forall u, v \in [0,1], \quad C_1(u, v) \leq C_2(u, v) \\
 C_1 > C_2 \iff \forall u, v \in [0,1], \quad C_1(u, v) \geq C_2(u, v)
 \]

- 3 special (fundamental/basic) copulas
 - The independent copula, \(C_i(u, v) = uv \), expresses statistical independence.
 - The minimum copula, \(C^- (u, v) = \max\{0, u + v - 1\} \), as well as the maximum copula, \(C^+ (u, v) = \max\{u, v\} \), expresses perfect co-movement (in either direction).

\[
\forall u, v \in [0,1], \\
C^-(u, v) \equiv \max\{0, u + v - 1\} \leq C(u, v) \leq C^+(u, v) \equiv \min\{u, v\}
\]

- Also, just as a continuous c.d.f. can be differentiated, resulting in a probability density function (p.d.f.), so too can we work with a copula density function.

\[
c(u, v) \equiv \frac{\partial^2 C(u, v)}{\partial u \partial v}
\]
II. Methodology – introducing Gaussian copulas (2)

- How many (kinds of) copulas are (out) there?
 - What makes a bivariate copula?
 - $C(u,0) = \Pr(U \leq u \cap V \leq 0) = 0$
 - $C(1,v) = \Pr(U \leq 1 \cap V \leq v) = v$
 - C is 2-increasing.

\[
\begin{align*}
0 \leq u_1 \leq u_2 \leq 1 \\
0 \leq v_1 \leq v_2 \leq 1 \\
\Rightarrow \quad C(u_2, v_2) - C(u_1, v_2) - C(u_2, v_1) + C(u_1, v_1) \geq 0
\end{align*}
\]

- What is a parametric copula family?
 - The idea is to use a parameter to tune a degree of dependency.

- What about so-called elliptical copulas?
 - The idea is to borrow the dependency structure from any elliptical distribution.
 - Indeed the Gaussian copula is an elliptical copula, so is the Student’s t copula.
II. Methodology – introducing Gaussian copulas (3)

- The “3 islands” analogy
 - The ‘Gauss’ island …
 ... is populated by 2 (correlated) standard normal random variables Z_1 and Z_2.
 - The ‘Copula’ island …
 ... is populated by 2 uniform random variables U_1 and U_2.
 - The ‘General’ island …
 ... is populated by 2 random variables X and Y.

\[
\begin{align*}
\{U_1 \leq u_1\} & \iff \{X \leq x\} \iff \{Z_1 \leq z_1\} \\
\{U_2 \leq u_2\} & \iff \{Y \leq y\} \iff \{Z_2 \leq z_2\}
\end{align*}
\]

These random variables are tied together...
...in the sense that...
...these events are considered equivalent.

\[
\{U_1 \leq u_1 \land U_2 \leq u_2\} \iff \{X \leq x \land Y \leq y\} \iff \{Z_1 \leq z_1 \land Z_2 \leq z_2\}
\]
II. Methodology – introducing Gaussian copulas (4)

- The transformation (transportation between the “3 islands”)

\[
\begin{align*}
\mathbf{u}_1, \mathbf{x}, \mathbf{z}_1 \quad \Rightarrow \quad & u_1 = F_X(x) = \Phi(z_1) \\
\mathbf{u}_2, \mathbf{y}, \mathbf{z}_2 \quad \Rightarrow \quad & u_2 = F_Y(y) = \Phi(z_2)
\end{align*}
\]

\[
\begin{align*}
F_X^{-1}(u_1) &= x = F_X^{-1}(\Phi(z_1)) \\
\Phi^{-1}(u_1) &= \Phi^{-1}(F_X(x)) = z_1 \\
F_Y^{-1}(u_2) &= y = F_Y^{-1}(\Phi(z_2)) \\
\Phi^{-1}(u_2) &= \Phi^{-1}(F_Y(y)) = z_2
\end{align*}
\]

- Hence the following joint c.d.f. definitions are kept identical.

<table>
<thead>
<tr>
<th>joint uniform distribution</th>
<th>bivariate normal (Gaussian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pr(\mathbf{u}_1 \leq \mathbf{u}_1 \cap \mathbf{u}_2 \leq \mathbf{u}_2))</td>
<td>(\Pr(\mathbf{Z}_1 \leq z_1 \cap \mathbf{Z}_2 \leq z_2))</td>
</tr>
<tr>
<td>(= \Pr(\mathbf{Z}_1 \leq \Phi^{-1}(\mathbf{u}_1) \cap \mathbf{Z}_2 \leq \Phi^{-1}(\mathbf{u}_2)))</td>
<td>(= \Phi(\mathbf{z}_1, \mathbf{z}_2</td>
</tr>
</tbody>
</table>

expressed as a function over \([0,1]^2\)

<table>
<thead>
<tr>
<th>joint arbitrary distribution</th>
<th>bivariate normal (Gaussian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pr(X \leq x \cap Y \leq y))</td>
<td>(\Pr(\mathbf{Z}_1 \leq z_1 \cap \mathbf{Z}_2 \leq z_2))</td>
</tr>
<tr>
<td>(= \Pr(\mathbf{Z}_1 \leq \Phi^{-1}(F_X(x)) \cap \mathbf{Z}_2 \leq \Phi^{-1}(F_Y(y))))</td>
<td>(= \Phi(\mathbf{z}_1, \mathbf{z}_2</td>
</tr>
</tbody>
</table>

expressed as a function of 2 c.d.f.
Finally ...

interpretation 1: bivariate c.d.f. over unit-square support, i.e. with uniform marginals

\[
C : [0,1]^2 \rightarrow [0,1]
\]

\[
C(u_1, u_2) = \Phi\left(\Phi^{-1}(u_1), \Phi^{-1}(u_2) \bigg| \rho \right) = \Pr(U_1 \leq u_1 \cap U_2 \leq u_2)
\]

interpretation 2: functional that takes two univariate c.d.f.'s to produce a joint c.d.f.

\[
C : D \subseteq \mathbb{R}^2 \rightarrow [0,1]
\]

\[
C(x, y) = C\left((F_X(x)), (F_Y(y))\right) = \Phi\left(\Phi^{-1}(F_X(x)), \Phi^{-1}(F_Y(y)) \bigg| \rho \right) = \Pr(X \leq x \cap Y \leq y)
\]
II. Methodology – introducing Gaussian copulas (6)

- This is what a bivariate Gaussian copula density looks like:
II. Methodology – how do we use Gaussian copulas

- Let’s generalise from bivariate to “truly” multivariate copulas.
 - As with multivariate normal distributions, the parameterisation of a multivariate Gaussian copula is achieved by way of a matrix, i.e. the *correlation matrix*.

- Application conundrum.
 - Fact …
 - A standard normal p.d.f. cannot be analytically integrated.
 - There are many other copulas that don’t require numerical integrations.
 - Then …
 - Why is the Gaussian copula so popular in financial application?
 - Is it because financial analysts grew up on Markowitz’ MPT?
 - More likely, it’s because Gaussian copula is *(Monte Carlo) Simulation* friendly.
 - And nowadays complex financial derivatives are priced exactly via such a method.
 - Hence …
II. Methodology – how do we use Gaussian copulas (2)

- Let’s consider a “Monte Carlo expectation” algorithm.
 - Recall how $E[g(X)]$ can be approximated by taking the average of the values of g evaluated at the many many many pseudo-randomly generated random variates.
 - To generate $E[g(X_1, \ldots, X_n)]$, where each individual X_i can have any distribution (e.g. X_1 is exponentially distributed while X_2 is normally distributed, and so on), with dependency structure specified as a Gaussian copula (i.e. parameterised by the correlation matrix R), for each simulation run:
 (i) Generate n i.i.d. pseudo-random standard normal random variates $\{z_1, \ldots, z_n\}$ ➔ vector z.
 (ii) Multiply z by the *cholesky decomposition* L of the correlation matrix R, i.e. $y = L z$,
 i.e. using the online matrix calculator [http://www.bluebit.gr/matrix-calculator].
 (iii) Transform $\{y_1, \ldots, y_n\}$, the components of y, into uniform random variates $\{u_1, \ldots, u_n\}$,
 i.e. using “NORMSINV()”.
 (iv) Use the inverses of whatever marginals of X_1, \ldots, X_n to transform $\{u_1, \ldots, u_n\}$ into $\{x_1, \ldots, x_n\}$.
 (v) Calculate $g(x_1, \ldots, x_n)$ and record/use the value for this one simulation run.
II. Methodology – pricing multiname (credit) derivatives

- Recall the *Equivalent Martingale Method (EMM)* of derivatives pricing.
 - Which essentially amounts to calculating the expectation of the final pay-off function, where expectation is taken w.r.t. the *risk neutral probability (measure)*.
 - With multiname (credit) derivatives, the expectation involve multiple underlyings, which in most cases are not statistically independent, hence a copula application.

- **Pricing vs. Calibration**
 - Recall how the *Black-Scholes (1973)* options pricing formula prices a European call on equity governed by *Geometric Brownian Motion (BGM)* using the σ parameter; whereas, these days, the existence of a liquid options market allows us to “back out”, i.e. calibrate, the value of σ, hence “options-implied volatility”.
 - Assuming *homogeneous default correlation*, i.e. 1-parameter R, parameterised by a single ρ, with a liquid CDO market, i.e. CDX & iTraxx, one can also market calibrate the value for ρ, hence “compound/base correlation”.
III. Examples

...
IV. Q&A (please!)

...