Bank Lending and Property Prices in Hong Kong

Motivation

- Hong Kong has experienced a number of property price “cycles” since 1980.
 - Severe and frequent!
 - Have been associated with movements in bank lending.

- International experience:
 - Credit expansion and property price booms.
 - Banking sector fragility.

Several issues arise:

- What was the role of bank lending in residential property price cycles?
 - Did bank lending “trigger” the cycles?
 - Did banks merely expand lending in response to a growing demand for loans?

- Understanding the correlation may be important for policy.

- Given the currency board, monetary policy can not be used to guard against asset price cycles.
 - Little evidence that interest rates drive property prices.

- Focus shifts to regulatory policy:
 - “Loan-to-value” ratio of ≤ 70% in 1991.
 - January 1997 ≤ 60% for luxury properties (withdrawn).
 - Limit on share of property lending to 40% 1994 (withdrawn).
 - The 70% ratio can be exceeded if the excess is covered by mortgage insurance (and, recently, to facilitate refinancing of loans with negative equity).

- How have these policies impacted on bank lending?
Empirical Work

- Focus on three variables:
 - Bank lending.
 - Total domestic loans.
 - Alternative measure: mortgage loans.
 - Property prices.
 - Residential.
 - Alternative measure: commercial.
 - Real GDP.

Appendix — Table 2
Trace Tests for Cointegration

<table>
<thead>
<tr>
<th>Null hypothesis of</th>
<th>r = 0</th>
<th>r = 1</th>
<th>r = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace test statistics</td>
<td>29.80</td>
<td>12.90</td>
<td>4.10</td>
</tr>
<tr>
<td>p-value</td>
<td>0.05</td>
<td>0.12</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Appendix — Table 3
Cointegration Tests: β and α Vectors

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real bank lending</td>
<td>1.00</td>
<td>-0.09</td>
</tr>
<tr>
<td>Real GDP</td>
<td>-0.90</td>
<td>-0.02</td>
</tr>
<tr>
<td>Real property price</td>
<td>-0.43</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are standard errors for α.
Table 1. Long-run Relationship

<table>
<thead>
<tr>
<th>CI vector</th>
<th>Loading coefficient</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real bank lending</td>
<td>1.00</td>
<td>-0.13</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Real GDP</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Real property price</td>
<td>-0.36</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note: Number in parentheses is the standard error for α.

Cointegration

- Cointegration results:
 - One CI vector:
 - Lending - RGDP - 0.36*Property Price.
 - Weak exogeneity:
 - Loans adjust.

- Dynamic (short-run) analysis:
 - Models for quarterly changes in:
 - Real bank lending.
 - Real property prices.
 - Strongly contemporaneously correlated.
 - ρ = 0.43 in the data.
 - ρ = 0.41 in the VAR system.
 - What explains the correlation?
 - “Lending driving property prices”.
 - “Property prices driving lending”.
 - Simultaneity!

- Strategy:
 - Use general-to-specific modelling to obtain models for:
 - \(\Delta l = g(\Delta p, CI, ...) \).
 - \(\Delta p = f(\Delta l, CI, ...) \).
 - Expect CI to be insignificant in the second relationship.
 - Obvious simultaneity bias:
 - Use Hausman tests to see whether one or both regressions are subject to simultaneity.

- Results as expected:
 - \(\Delta p \) and CI are both significant.

\[\Delta l = +0.244*\Delta l - 0.313 + 0.239*\Delta r + 0.176*\Delta p - 0.078*\Delta l + 0.357*(\Delta r - \Delta r) \]
\((SE) \ (0.083) \ (0.107) \ (0.034) \ (0.101) \ (0.142) \)
\(R^2 = 0.57; \) Sample period: 1984:1 - 2001:4

\[\Delta p = +0.283*\Delta p - 0.008 + 0.900*\Delta l - 0.034*\Delta l + 0.041*\Delta l \]
\((SE) \ (0.097) \ (0.007) \ (0.248) \ (0.013) \ (0.024) \)
\(R^2 = 0.49; \) Sample period: 1984:1 - 2001:4

- Results as expected:
 - \(\Delta l \) significant.
 - CI insignificant.
• Simultaneity bias:
 – Use predetermined variables as instruments.
 – Δl-equation:
 • p-value = 0.55.
 • Property prices enter equation as structural variable.
 – Δp-equation:
 • p-value = 0.01.
 • Lending growth subject to simultaneity.
 – ‘reverse causation’.
 – Estimate with IV:
 • Lending growth not structural determinant of property prices.

• Property prices appear to be driven by:
 – State of the economy.
 – Supply of new housing.

• Further analysis of lending equation:
 – Did this constrain the growth of lending?
 • Did the parameter on Δp decline around 1991?
 – Note, Hansen test does not point to instability.
 • Assumes unknown breakpoint (lacks power).
 – Recursive estimates.

Suggests break.

• Test:
 – Assumes knowledge of break date.
 – Add dummy*Δp.
 – Dummy = 0 before 1991:2.
 – β = -0.27 (se = 0.09).
 – β declined from 0.40 to 0.13.
• The restriction on banks’ ability to lend is likely to have given them some price making power.

• Some evidence that spread between BLR and interbank rates rose around 1990.
 – Much less volatile.

• Spread significant and negative if included.
 – Signs of instability.

\[
\Delta l = 0.211*\Delta l_{-2} - 0.269 + 0.214*\Delta y + 0.196*\Delta p + 0.349*(\Delta r_1 - \Delta r_2) \\
\text{(SE)} (0.081) (0.105) (0.099) (0.034) (0.137) \\
- 0.070*CI_1 - 0.419*\text{spread} \\
\text{(0.026) (0.178)} \\
R^2 = 0.61; \text{Sample period: 1984:1 - 2001:4}
\]

Conclusion

• Strong co-movements between lending and property prices.

• Appear to reflect reactions of bank lending to demand for credit rather than impact of lending on property market.

• Evidence that the introduction of loan-to-valuation ratio in 1991 reduced the impact of property prices increases on bank lending.