Bank of Thailand DSGE Model

Presented at the Workshop on
ECONOMIC MODELS AT THE BANK OF THAILAND

Organized by the
Modelling and Forecasting Team
December 17, 2008
1. Motivation

2. The Model

3. Model parameterization

4. Model properties

5. Model evaluation

6. Conclusions
1. Motivation
Wanted: A fully integrated framework for policy analysis

A model that

- Has a strong theoretical foundation and relates to structural features of the economy
- Tells a coherent story
- Answers policy questions
- Provides forecasts on a regular basis
1.1. Purpose (2)

Current stage of a structural model currently developed at BOT

- Having a sufficiently rich micro foundation
- Capturing structural features of the Thai economy
- Giving internally consistent stories under various simulations
- Answering policy questions qualitatively
 - Answering policy questions quantitatively
 - Forecasting
1.2. Macroeconometric and DSGE Models

<table>
<thead>
<tr>
<th>Model property</th>
<th>Macroeconometric Models</th>
<th>DSGE Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Stochastic</td>
<td>Unexplained variations in the endogenous variables are \textit{regression residuals}</td>
<td>Unexplained variations in the endogenous variables are \textit{random shocks} with well-defined distribution</td>
</tr>
<tr>
<td>General Equilibrium</td>
<td>Relationships are \textit{loosely} based on theory in \textit{ad hoc} manner</td>
<td>Relationships are \textit{explicitly} based on optimization in \textit{coherent} manner</td>
</tr>
</tbody>
</table>
2. The Model
2.1. Model Requirements for the Thai Economy

- Mimic the structure of the economy
 - Small open economy (emphasis on the external sector)

- Match observed features of the economy
 - Long-term features
 - Productivity growth
 - GDP component and factor income shares
 - Short-term features
 - Rigidities in wage and prices
2.2. Model Environment

<table>
<thead>
<tr>
<th>Agents</th>
<th>What they do</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
<td>▪ Consume and invest
▪ Deposit funds with banks; trade foreign bonds
▪ Supply labor to firms and set wage</td>
<td>▪ Consumption habit persistence; Investment adjustment costs</td>
</tr>
<tr>
<td>Export Firms</td>
<td>▪ Hire inputs and produce
▪ Only domestic firms set output price and borrow from banks to pay for labor</td>
<td>▪ Competitive supplier of export good; no rigidity in export price</td>
</tr>
<tr>
<td>Domestic Firms</td>
<td>▪ Only domestic firms set output price and borrow from banks to pay for labor</td>
<td>▪ Monopolistic supplier of domestic good; domestic price rigidities</td>
</tr>
<tr>
<td>Banks</td>
<td>▪ Take deposits from households and lend to domestic firms</td>
<td>▪ Competitive supplier of loans; financial frictions</td>
</tr>
<tr>
<td>Government</td>
<td>▪ Spend according to some rule</td>
<td>▪ Ricardian equivalence</td>
</tr>
<tr>
<td>Central Bank</td>
<td>▪ Set interest rate according to some rule</td>
<td>▪ Inflation targeting with interest rate smoothing</td>
</tr>
</tbody>
</table>
2.3. Model Structure

DEMAND
- Domestic demand
 - Consumption (C)
 - Investment (I)
 - Govt spending (G)
- External demand
 - Exports (X)

OUTPUTS
- Domestic good (Y^D)
- Export good (Y^X)

INPUTS
- Capital (K^D, K^X)
- Labor (L^D, L^X)
- Import (M^D, M^X)
Model consists of

- First-order conditions and policy rules
- Exogenous processes
- Market clearing conditions
- Steady-state conditions

Transition dynamics
N equations for N unknowns

Transition dynamics
plus terminal conditions

Fully/partially micro-founded behavior

Dynamic path of model variables can be solved
(Think of solving a system of differential equations)
2.4. Model Equations (2)

2.4.1. First-order conditions

Ex. 1. Households

\[E_0 \sum_{t=0}^{\infty} \beta^t \left[(1 - \chi) \log \tilde{C}_t - \varphi^L \frac{L_t^{1+\eta}}{1 + \eta} \right] \]

subject to

\[P_t^D (C_t + I_t) + D_t \leq (1 + R_{t-1}) D_{t-1} + W_t L_t + R_t^K K_t + \sum_j \Phi_j \]

\[K_{t+1} \leq (1 - \delta) K_t + F(I_t, I_{t-1}). \]
2.4. Model Equations (3)

Consumption habit persistence

\[\tilde{C}_t = \frac{C_t - \chi h_t}{1 - \chi} \quad \text{with} \quad h_t = (1 + \alpha) C_{t-1} \]

Not today’s consumption that matters, but how it is compared with “habit”

Optimal consumption

\[\frac{1}{\tilde{C}_t} = \lambda_t P_t^D \]

Intuition Utility gained from consuming one unit more (LHS) equals utility lost from having wealth reduced (RHS)
2.4. Model Equations (4)

Investment adjustment costs

\[K_{t+1} = (1 - \delta)K_t + F(I_t, I_{t-1}) \]

\[F(I_t, I_{t-1}) = \left[1 - \frac{\xi I}{2} \left(\frac{I_t}{I_{t-1}} - (1 + \alpha) \right)^2 \right] I_t \]

Capital accumulated throughout this period is not equal to today’s investment, but is instead a function of investment made today and yesterday.
2.4. Model Equations (5)

Optimal investment

\[
\frac{Q^K_t}{P^D_t} = \frac{1}{1 - \xi^I \frac{I_t}{I_{t-1}} \left[\frac{I_t}{I_{t-1}} - (1 + \alpha) \right] - \frac{\xi^I}{2} \left[\frac{I_t}{I_{t-1}} - (1 + \alpha) \right]^2} \times \left[1 - \xi^I \beta E_t \frac{\lambda_{t+1}}{\lambda_t} \frac{Q^K_{t+1}}{P^D_t} \left(\frac{I_{t+1}}{I_t} \right)^2 \left[\frac{I_{t+1}}{I_t} - (1 + \alpha) \right] \right]
\]

Intuition

- LHS is Tobin's q, which is the ratio of the shadow value of capital to the replacement cost of capital
- When $\xi^I = 0$ the equilibrium condition is given by $q = 1$
- There will be more (less) investment if q is greater (less) than unity
Exchange rate determination

\[
\max_{B_t^*} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \lambda_t S_t \left\{ B_t^* - \left[1 + \frac{\xi^B}{2} \left(\frac{S_{t-1}B_{t-1}^*}{4Y_{t-1}^N} - \psi \right) \right] (1 + R_{t-1}^*) B_{t-1}^* \right\}
\]

First-order condition:

\[
R_t - R_t^* = E_t dS_{t+1} + \xi^B \left(\frac{B_t}{4Y_t^N} - \frac{\psi}{2} \right) + \nu
\]

Intuition

- The term in the square brackets is the premium on the rate at which the household can borrow, and this premium is increasing in the ratio of debt to nominal GDP
- First-order condition with respect to \(B_t^* \) gives a UIP condition
2.4. Model Equations (7)

Ex. 2. Domestic firms

Cost minimization

\[L^D = (1 + R^L_t) W_t L_t^D + P^M_t M_t^D + R^K_t K_t^D + Q^D_t \left[Y_t^D - (A_t L_t^D)^{\gamma^P_L} (M_t^D)^{\gamma^P_M} (K_t^D)^{1-\gamma^P_L-\gamma^P_M} \right] \]

Optimal inputs demanded

\[(1 + R^L_t) W_t L_t^D = \gamma^D_L Q_t^D Y_t^D \]
\[P^M_t M_t^D = \gamma^D_M Q_t^D Y_t^D \]
\[R^K_t K_t^D = (1 - \gamma^D_L - \gamma^D_M) Q_t^D Y_t^D \]
2.4. Model Equations (8)

Pricing problem

\[
\min_{P_t^D} E_0 \sum_{t=0}^{\infty} \beta^t \left[(P_t^D - P_t^{D*})^2 + \xi^D (\Delta P_t^D - \Delta \bar{P}_t^D)^2 \right]
\]

Optimal price setting

\[
P_t^D = P_t^{D*} + \xi^D \left[-(\Delta P_t^D - \Delta \bar{P}_t^D) + \beta \left(E_t \Delta P_{t+1}^D - \Delta \bar{P}_t^D \right) \right]
\]

where \(P_t^{D*} = \mu^D Q_t^D \).
2.4. Model Equations (9)

2.4.2. Exogenous processes

Productivity

\[A_t = A_{t-1} + \alpha + \varepsilon_t^A \]

Intuition Productivity growth is a random walk with drift

2.4.3. Market clearing conditions

Capital at any* t

\[K_t = K_t^D + K_t^X \]

Intuition Capital supplied by households = capital demanded by firms

2.4.4. Steady-state conditions

Capital in steady state

\[K_{t}^{ss} = \bar{K} + \alpha t \]

Intuition Along balanced growth path capital-output share is constant
Two broad methods for parameterizing DSGE models: estimation and calibration

- **Estimation** Potential difficulties with the likelihood: limited data, structural breaks, flat regions, discontinuities, or multiple local maxima

- **Calibration** Select parameters based on empirical findings that result in a model that best characterizes Thai economy
3.1. Steady-State Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.9926</td>
<td>Discount factor (real interest rate 3% per year)</td>
</tr>
<tr>
<td>δ</td>
<td>0.0105</td>
<td>Depreciation rate (4.2% per year)</td>
</tr>
<tr>
<td>η</td>
<td>3.0303</td>
<td>Inverse of Frisch elasticity</td>
</tr>
<tr>
<td>φ_L</td>
<td>1</td>
<td>Scaling parameter for labor disutility</td>
</tr>
<tr>
<td>μ_W</td>
<td>1.05</td>
<td>Wage markup</td>
</tr>
<tr>
<td>ψ</td>
<td>0.25</td>
<td>Ratio of foreign debt to nominal GDP</td>
</tr>
<tr>
<td>Firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ^D</td>
<td>1.20</td>
<td>Price markup, domestic firms</td>
</tr>
<tr>
<td>γ^D_L</td>
<td>0.70</td>
<td>Labor income share, domestic firms</td>
</tr>
<tr>
<td>γ^D_M</td>
<td>0.15</td>
<td>Imported input income share, domestic firms</td>
</tr>
<tr>
<td>γ^X_L</td>
<td>0.64</td>
<td>Labor income share, export firms</td>
</tr>
<tr>
<td>γ^X_M</td>
<td>0.18</td>
<td>Imported input income share, export firms</td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>0.20</td>
<td>Ratio of govt. expenditure to nominal GDP</td>
</tr>
<tr>
<td>π</td>
<td>0.0074</td>
<td>Inflation target (3% per year)</td>
</tr>
<tr>
<td>Exogenous processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.0059</td>
<td>Productivity growth rate (2.4% per year)</td>
</tr>
<tr>
<td>π^*</td>
<td>0.0074</td>
<td>Foreign inflation target (3% per year)</td>
</tr>
</tbody>
</table>
3.2. Dynamic Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ</td>
<td>0.85</td>
<td>Consumption habit persistence</td>
</tr>
<tr>
<td>ξ^I</td>
<td>1</td>
<td>Investment adjustment cost</td>
</tr>
<tr>
<td>ξ^W</td>
<td>10</td>
<td>Wage adjustment cost</td>
</tr>
<tr>
<td>ξ^B</td>
<td>0.4</td>
<td>Interest rate premium on foreign debt holdings</td>
</tr>
<tr>
<td>ν</td>
<td>0.005</td>
<td>Differential between domestic and foreign interest rate</td>
</tr>
<tr>
<td>Firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ^D</td>
<td>10</td>
<td>Degree of price rigidities</td>
</tr>
<tr>
<td>Banks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>0.5</td>
<td>Elasticity of willingness to lend with respect to domestic output growth</td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ^G</td>
<td>0.80</td>
<td>Persistence in government expenditure</td>
</tr>
<tr>
<td>ρ^R</td>
<td>0.85</td>
<td>Persistence in policy interest rate</td>
</tr>
<tr>
<td>κ</td>
<td>25</td>
<td>Responsiveness of policy rate to inflation</td>
</tr>
<tr>
<td>Exogenous processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ^{R*}</td>
<td>0.8</td>
<td>Persistence in foreign interest rate</td>
</tr>
<tr>
<td>ρ^T</td>
<td>0.8</td>
<td>Persistence in terms of trade</td>
</tr>
</tbody>
</table>
4. Model Properties

Simulation

- Start from the steady state
- Perturb the model by introducing shocks
- Solve for transition paths toward the post-shock steady state
Interest Rate Shock

Private consumption

Private investment

Exports

Exchange rate

Domestic marginal cost

Domestic good price

Loan-to-deposit ratio

Inflation

Policy interest rate
Exchange Rate Shock

FX premium shock

Exchange rate

Export production

Domestic real marginal cost

Inflation

Policy interest rate

Private consumption

Private investment

Domestic good production
Price Shock

Inflation

Policy interest rate

Exchange rate

Export production

Real wage

Private consumption

Private investment

Domestic good production

Domestic real marginal cost
Productivity Shock
Evaluation

- Model **not** to be judged primarily by how well it fits data
- But **also** by how well it captures key aspects of monetary policy transmission mechanism
5. Model Evaluation

Methodology (1)

- Compare statistical moments (volatility, persistence, comovements) obtained from model vs. data
- Moments implied by model can be computed in straightforward manner
- Moments implied by data
 - Sample moments: Kydland and Prescott (1982)
 - Distribution of moments: Benes, de Castello Branco, and Vavra (2007)
5. Model Evaluation

Methodology (2)

- Calculate the point estimate of the empirical population moment—say, autocorrelation—by fitting a VAR
 \[x_t = A x_{t-k} + \varepsilon_t \]

- Resample \(x_t \) using a bootstrap procedure
 \[\hat{x}_t^i = A \hat{x}_{t-k}^i + \eta^i \varepsilon_t \]

- Given \(\hat{x}_t^i \) we reestimate a VAR
 \[\hat{x}_t^i = \hat{A}^i \hat{x}_{t-k}^i + \hat{\varepsilon}_t^i \]

For each \(i \)th resampling we now have \(\hat{A}^i \) and \(\hat{\varepsilon}_t^i \) as respective counterparts to \(A \) and \(\varepsilon_t \) of the first step. Consequently, we can compute the autocorrelation function for the \(i \)th resampling, which is a function of \(var(\hat{\varepsilon}_t^i) \) and \(\hat{A}^i \), leading to a distribution of the autocorrelation.
Relative Standard Deviations

- Inflation relative to Consumption growth
- Investment growth relative to Consumption growth

Legend:
- Bootstrap
- VAR
- Model
Cross Correlations

Consumption growth x Investment growth

Consumption growth x Inflation

Investment growth x Inflation

- Bootstrap
- VAR
- Model
6. Conclusions: What have we done

Important model features

- **Optimizing agents** make intertemporal decisions rationally
- Nominal and real **frictions** incorporated to generate realistic dynamics
- Parameters are **calibrated** based on empirical findings
- We assess model properties by examining **impulse responses** which are found to be mostly reasonable
- We also assess statistical moments implied by the model and compare them with those obtained from the data. Certain moments are better matched with data than others
Several model development plans are currently under way

- **Model structure**
 - Introduce consumption of import good
 - Move away from the competitive banking sector
 - Revisit the fiscal rule to prepare for larger role of fiscal policy

- **Parameterization**
 Estimate the model formally using the Bayesian approach
 - Allow the data to determine model parameters in a more consistent manner, while we can still incorporate our prior beliefs in the form of calibrated values
Experience over the past two years has proved that knowledge sharing among central bank staff has been a success.

While DSGE models are widely considered the workhorse model for policy analysis that is at the research frontier:
- It needs to be kept in mind that no single model can answer all types of questions correctly all the time.

What is more important is a good understanding of the inner workings of the economy, which are essentially what every economic model tries to capture and every economist tries to appreciate.