

Table of Contents

Th	nailand Taxonomy Board Phase 2	V
1.	Introduction	1
Ag	griculture	1
2.	Agriculture background	1
	2.1 Crop production	2
	2.2 Livestock production	3
	2.3 Aquaculture	4
3.	Major climate and environment-related issues	6
	Key sectoral climate policies	8
4.	Agricultural sub-activities climate materiality assessment	10
	4.1 Agricultural criteria scope	13
	4.2 Agricultural criteria methodological approach	15
5.	Taxonomy application scheme	18
	5.1 Eligible expenditures and produces	25
	5.2 Integrated Farm Management Plan	26
	5.3 Do No Significant Harm Measures of Agriculture Sector	28
Fo	prestry	34
6.	Forestry background	34
7.	Major climate and environment-related issues	35
	Key sectoral climate policies	35
8.	Forestry activities climate materiality assessment	36
	8.1 Forestry criteria scope	39
	8.2 Forestry criteria methodological approach	39
9	Forestry subsector criteria and thresholds	42

	1.	Sustainable forest management	42
	2.	Forestry plantation	43
	3.	Conservation, restoration, and maintenance of natural forests	46
Ar	nex: El	igible agricultural practices	48
	1. Sus	tainable perennial or non-perennial crops	48
	2. Sus	tainable rice production	60
	3. Sus	tainable sugarcane production	66
	4. Sus	tainable oil palm production	70
	5. Sus	tainable rubber trees production	74
	6. Sus	tainable cassava production	78
	7. Sus	tainable livestock production	81
	8 Sus	tainable aguaculture production	89

List of Tables

Table 1 Production of major crops in Thaitand (2022)
Table 2 The number of livestock and poultry farmers by region, 20234
Table 3 Calculation of burning areas and PM2.5 emissions of cash crops, 20217
Table 4 Agricultural sector emission profile
Table 5 List of eligible certification schemes
Table 6 Do No Significant Harm Measures: DNSH
Table 7 Examples of sustainable contribution to the objectives of Thailand Taxonomy 31
Table 8 Land Use, Land-Use Change and Forestry sector emission profile
Table 9 Eligible practices for Sustainable perennial or non-perennial crops, including corn,
mango, pineapples, banana etc48
Table 10 Eligible practices for sustainable rice production
Table 11 Eligible practices for sustainable sugarcane production
Table 12 Eligible practices for sustainable oil palm production70
Table 13 Eligible practices for sustainable rubber trees production74
Table 14 Sustainable practices for cassava production
Table 15 Eligible practices for Sustainable livestock production
Table 16 Eligible practices for sustainable aquaculture production

List of Figures

Figure 1 Net zero GHG emission timeline for the agriculture sector	9
Figure 2 Agricultural activities within the scope of Agricultural criteria	14
Figure 3 Agricultural Criteria Application Scheme	26
Figure 4 Thailand's Forest Area (% of Province Area), 2019	35

Thailand Taxonomy Board Phase 2

Agriculture sector

- 1. Department of Climate Change and Environment, Ministry of Natural Resources and Environment
- 2. Bank of Thailand
- 3. Securities and Exchange Commission
- 4. Stock Exchange of Thailand
- 5. Department of Alternative Energy Development and Efficiency, Ministry of Energy
- 6. Thailand Greenhouse Gas Management Organization
- 7. Office of Natural Resources and Environmental Policy and Planning, Ministry of Natural Resources and Environment
- 8. Department of Agriculture, Ministry of Agriculture and Cooperatives
- 9. Office of Agricultural Economics, Ministry of Agriculture and Cooperatives
- 10. Rice Department, Ministry of Agriculture and Cooperatives
- 11. Department of Livestock Development, Ministry of Agriculture and Cooperatives
- 12. Royal Forest Department, Ministry of Natural Resources and Environment
- 13. Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment
- 14. Department of Fisheries, Ministry of Agriculture and Cooperatives
- 15. Department of Marine and Coastal Resources, , Ministry of Natural Resources and Environment
- 16. Board of Trade of Thailand
- 17. Federation of Thai Industries
- 18. Renewable Energy Industry Club, Federation of Thai Industries
- 19. Thai Bankers' Association
- 20. Association of International Bank
- 21. Government Financial Institutions Association

Sponsored by

Developed by

In cooperation with

1. Introduction

As a country most directly impacted by climate change¹, Thailand needs to accelerate investment in both climate change mitigation and adaptation. The agriculture and forestry sectors are highly vulnerable to the impacts of climate change and a wide range of other environmental challenges exacerbated by climate change, such as biodiversity loss. Most of the crops grown in Thailand are dependent on the climatic situation², and its change can affect the sector in a very negative way. The same is true for the livestock and forestry sectors. Agriculture (subdivided into plant cultivation, livestock production and aquaculture production) and forestry are combined within the ISIC classification into a single category, but in this taxonomy, the methodological approach to creating criteria for them differs significantly. Therefore, an overview will be given for both agriculture and forestry together, but methodologically, they will be considered in separate sections.

Agriculture

2. Agriculture background

Agricultural activities, including crop production, livestock production, and aquaculture production, play a pivotal role in Thailand's economy, food security, and rural livelihoods. Forestry is also an important economic sector for Thailand, with key exports including sawn wood, paper and paperboard, fibreboard, particleboard, wooden furniture, and furniture parts (mostly made from rubberwood)³. Together, the agriculture, forestry, and fishing sectors contributed 8.8% added value to Thailand's GDP in 2022, coming down from 36.4% in 1960.⁴

¹ ReliefWeb, "Global Climate Risk Index," 2021, https://reliefweb.int/report/world/global-climate-risk-index-2021?gad_source=1&gclid=CjwKCAjwtqmwBhBVEiwAL-WAYZOyOOsMhUgutJOL5kjszGNOULPSLejOzOMRROp1vc7b-1B_g7ql4RoCaooOAvD_BwE

² UNFCCC, "Thailand's Fourth National Communication under the United Nations Framework Convention on Climate Change," December 22, 2022, https://unfccc.int/sites/default/files/resource/Thailand%20NC4 22122022.pdf

³ Only a very small volume of unprocessed logs (mostly plantation-grown teak) is exported each year by the Forest Industry Organization, which is the only legally authorised entity for exporting unprocessed logs (See Timber Trade Portal,

[&]quot;Overview of Timber Sector of Thailand," n.d., https://www.timbertradeportal.com/en/thailand/142/timber-sector.).

⁴ World Bank Open Data. "World Bank Open Data," n.d. https://data.worldbank.org/country/thailand.

While the sector has seen a decline in contribution to the GDP, it remains a major source of employment for some 12.7 million workers, approximately 30% of Thailand's total labour force. Labour shortage, lack of production planning and management, inequality of access to water resources, and climate change are among the key challenges facing the Thai agricultural sector. There are about 7.4 million agricultural households in Thailand. Land ownership situations in the Thai agricultural sector vary. Around 40% of farmers either own a small amount of land or no land. However, Thai farmers who own land have an average of 3.2 ha of land, which is higher than in other countries of Asia.

2.1 Crop production

As of 2021, 46% of Thailand's land area is agricultural land. In 2021, total agricultural production increased by 1.4%, recovering from a decline of 3.5% in 2020. Thailand has experienced substantial progress in increasing the value of productivity per labour unit and the gross income of small-scale agricultural producers. In 2019, the gross agricultural product was valued at USD 21.68 billion, compared to USD 17.25 billion in 2016. Thailand has increased the amount of sustainable agricultural land in the past four years, with increased government investment in the sector. Thailand is a top-ten global producer of agricultural products, including rice, cassava, sugarcane, palm oil, coconut, pineapple, and natural rubber. The country has become the world's 13th largest exporter of agricultural products after a more

_

bangkok/documents/publication/wcms 844317.pdf.

bangkok/documents/publication/wcms 844317.pdf.

https://data.worldbank.org/indicator/AG.LND.AGRI.ZS?end=2021&locations=TH&start=1990&view=chart.

 $https://www.boi.go.th/upload/content/Food\%20 industry_5 aa 7b 40bd 758b.pdf.$

⁵ International Labour Organization, "Working and employment conditions in the agriculture sector in Thailand," 2021, https://www.ilo.org/sites/default/files/wcmsp5/groups/public/@asia/@ro-

⁶ International Labour Organization, "Working and employment conditions in the agriculture sector in Thailand," 2021, https://www.ilo.org/sites/default/files/wcmsp5/groups/public/@asia/@ro-

⁷ Thailand Development Research Institute, "Thai Agriculture Needs a Shake-Up," November 2022, https://tdri.or.th/en/2022/11/thai-agriculture-needs-a-shake-up/.

⁸ Digital Economy Promotion Agency (DEPA), "Agriculture Landscape In Thailand," 2020, https://www.depa.or.th/storage/app/media/file/investment-bulletin.pdf.

⁹ World Bank, "Agricultural Land (% of Land Area) - Thailand," n.d.,

¹⁰ UNFCCC, "Thailand's Fourth Biennial Update Report under the United Nations Framework Convention on Climate Change," November 29, 2022, https://unfccc.int/documents/624750.

¹¹ Thailand Board of Investment, "Food Industry,"n.d.,

than 20% surge in agricultural trade in the first 11 months of 2022; the top three top agricultural products by revenue were fruits (164.79 billion baht), meat and fish (97.14 billion baht), and rubber (83.91 billion baht). The following table shows the production statistics of major Thai agricultural crops.

Table 1 Production of major crops in Thailand (2022)

Crops	Yield (kg/Rai)	Production	Area harvested	% of Area
		(ton)	(Rai)	harvested
Rice	18,675	34,317,028	71,776,456	51%
Natural rubber	8,600	4,825,907	21,928,413	16%
Cassava	134,138	34,068,005	9,921,056	7%
Sugar cane	377,425	92,095,784	9,531,688	7%
Maise (corn)	28,563	4,895,904	6,695,188	5%
Oil palm fruit	121,063	19,061,392	6,150,375	4%

Source: The Food and Agriculture Organization. 13

2.2 Livestock production

Livestock production in Thailand is on the rise.¹⁴ Poultry, particularly broilers, make up the majority of the livestock population in the country. In 2022, the number of poultry was 1,460,708,000 animals, followed by the number of pigs at 11,827,495 animals and cattle at 1,185,348 animals.¹⁵ The three product segments with the highest export growth are frozen meat (356,748 tonnes worth 48.07 billion baht, up 11.5% year on year); animal products, such as milk, eggs and canned food (98,066 tonnes worth 8.79 billion baht, up 5.4% year on year); and animal feed (105,461 tonnes worth 4.46 billion baht, up 11.7% year on year).¹⁶ Thailand-based Charoen Pokphand Foods (CPF) group is the world's largest producer of feed and shrimp

¹² The Nation Thailand, "Thailand is now the world's 13th largest exporter of agricultural products: minister," January 20, 2023, https://www.nationthailand.com/thailand/economy/40024187.

¹³ FAO, "FAOSTAT", https://www.fao.org/faostat/en/#data.

¹⁴ The Livestock Production Index includes meat and milk from all sources, dairy products such as cheese, and eggs, honey, raw silk, wool, and hides and skins

¹⁵ FAO, "FAOSTAT" - Crops and Livestock Products, https://www.fao.org/faostat/en/#data/QCL.

¹⁶ The Nation Thailand, "Exports of livestock products are rising, with frozen meat leading the way," June 18, 2023, https://www.nationthailand.com/thailand/economy/40028622.

and is a global top-three producer of poultry and pork.¹⁷ By value, Thailand is the world's biggest exporter of processed chicken and its 6th biggest exporter of frozen chicken.¹⁸

Table 2 The number of livestock and poultry farmers by region, 2023

Region	Farmer		Livestock (animal)						
	(person)	Beef	Cow	Buffalo	Pig	Chicken	Duck	Goat	Sheep
Total	3,551,607	9,655,380	774,461	1,784,160	11,172,465	519,520,597	31,928,467	1,568,059	136,539
Northern	714,050	1,484,190	78,382	359,335	2,123,579	70,017,748	4,709,988	221,520	25,262
Northeast	1,916,654	5,405,876	242,569	1,283,137	2,378,066	107,835,466	7,693,411	338,779	12,314
Central	397,300	1,624,420	446,599	114,248	5,211,854	299,869,346	16,056,765	565,293	67,992
Southern	523,603	1,140,894	6,911	27,440	1,458,966	41,798,037	3,468,303	442,467	30,971

Source: Information on the number of livestock in Thailand 2023, Department of Livestock Development

Beef produced in Thailand has been produced exclusively for domestic consumption. Beef cattle are mainly in the northeast (55.99%), with 16.82% in The Central Region 15.37% in the Northern area and 11.82% in the Southern area (2023). The greatest proportionate increase has occurred in the Southern and Northern regions, where cattle numbers have increased by 12.8% and 9.5% per year (2013-2023), respectively.

2.3 Aquaculture

The aquaculture and fisheries sector in Thailand has long been a crucial component of the country's economy, providing significant contributions through the supply of aquatic products for both domestic consumption and export. The sector has gained increasing importance due to changing societal values, growing domestic demand for aquatic resources, and the decline in natural fishery production. As natural aquatic resources face degradation, aquaculture has emerged as a critical means to supplement and sustain the supply of aquatic products, vital for both food security and economic stability. Factors such as climate change, the loss of natural habitats, and rising demand for seafood have driven this shift, prompting the Fisheries

¹⁷ Logistics Magazine, "CPF: The World's Largest Producer of Feed and Shrimp," September 2021,

https://logisticsmag.net/%E0%B8%94%E0%B8%B9%E0%B8%9A%E0%B8%97%E0%B8%84%E0%B8%A7%E0%B8%B2%E0%B8%A1-103089-cpf-the-worlds-largest-producer-of-feed-and-

 $shrimp.html \#: \sim = CPF\%20 is\%20 the\%20 world's\%20 largest, brand\%20 in\%20 many\%20 international\%20 markets$

¹⁸ Suppakorn Kornboontritos, "Industry Outlook 2023-2025: Chilled, Frozen and Processed Chicken Industry", February 15, 2023 https://www.krungsri.com/en/research/industry/industry-outlook/food-beverage/frozen-processed-chicken/io/io-chilled-frozen-processed-chicken

Department of Thailand to align its strategies with national policies and long-term development goals.

1. Freshwater aquaculture

Freshwater aquaculture in Thailand includes a variety of farming methods, such as monoculture (single-species farming), polyculture (multi-species farming), and integrated farming, where fish farming is combined with other agricultural activities like livestock rearing, crop cultivation, or rice farming. Predominantly, herbivorous fish species are farmed, followed by carnivorous species.

Over the past decade (2013-2023), freshwater aquaculture has seen a steady increase in production and economic value, driven by several factors. The average annual number of freshwater aquaculture farms was 521,847, covering 818,962 rai, with an average production of 429,292 tons per year, valued at 25,526 million baht. This represents 45.17% of total aquaculture production and 27.51% of its economic value. Production and value have been increasing at annual rates of 0.42% and 1.52%, respectively.

The growth in freshwater aquaculture can be attributed to the increase in registered farmers, partly due to government assistance during natural disasters such as floods and unfavourable weather conditions. Additionally, rising market prices for aquatic products have encouraged farmers to expand their operations. The relatively low investment and short production cycles associated with freshwater aquaculture make it an attractive option for both household consumption and commercial sales. Furthermore, government policies and measures, such as promoting the use of technology to reduce production costs and expanding market channels, have supported continuous production and provided farmers with more opportunities to sell their products.

2. Coastal Aquaculture

Coastal aquaculture in Thailand primarily involves the farming of marine shrimp, brackish water fish, marine fish, various shellfish species (such as oysters, cockles, and mussels), and sea crabs. Among these, marine shrimp farming is the most prominent, accounting for approximately 60% of the total coastal aquaculture production. However, the sector has faced challenges, particularly due to the outbreak of Early Mortality Syndrome (EMS) in shrimp, which has significantly impacted overall coastal aquaculture production.

From 2013 to 2023, the number of coastal aquaculture farms averaged 40,816 annually, covering 439,984 rai. The average production from these farms was 521,003 tons per year, with an economic value of 67,266 million baht. Despite being a smaller portion of the overall number of farms (7.25%), coastal aquaculture contributed 54.83% of total aquaculture production and 72.49% of its economic value. The EMS outbreak has led to a downward trend in coastal aquaculture production, beginning in 2013, highlighting the vulnerability of this sector to disease outbreaks and other environmental challenges.

Moving forward, the sector's ability to adapt to changing conditions, improve disease management, and leverage new technologies will be critical to sustaining its growth and ensuring its contribution to Thailand's economy and food security.

This Taxonomy will focus on the scope of aquaculture practices. The seawater or freshwater fishery is not included in the scope of this Taxonomy due to its complexity and lack of science-based criteria. Gratitude is extended to the Department of Fisheries, Ministry of Agriculture and Cooperatives for initiating and developing aquaculture practices in Thailand Taxonomy, which have been fundamental to the advancement of this field.

3. Major climate and environment-related issues

Climate change affects the Thai agricultural sectors through key changes in parameters such as temperature and precipitation.¹⁹ For example, some regions of Thailand are already experiencing average growing season maximum temperatures above 34C°, which is a temperature threshold above which rice yields can be negatively affected unless adaptation actions are taken. Changing precipitation patterns negatively affect rice farming, which is the backbone of the country's agriculture²⁰.

According to the studies, by 2050, changes in average temperatures and an increase in extreme events will result in losses to Thailand's agricultural sector, ranging from USD 17.83 billion to

https://www.adb.org/sites/default/files/publication/722251/climate-risk-country-profile-thailand.pdf

²⁰ Arunrat, Noppol, Nathsuda Pumijumnong, Sukanya Sereenonchai, Uthai Chareonwong, and Can Wang, "Assessment of Climate Change Impact on Rice Yield and Water Footprint of Large-scale and Individual Farming in Thailand," 2020, Science of the Total Environment 726 (July): 137864. https://doi.org/10.1016/j.scitotenv.2020.137864.

¹⁹ Asian Development Bank, "Climate Risk Country Profile: Thailand," 2021,

USD 83.83 billion, affecting all provinces of the country²¹. These negative impacts on agriculture are projected to have regional variation; the western, north-central and north-western regions are likely to suffer less negative impacts compared to the eastern, south-central, and north-eastern regions of the country²². To adapt to the impacts of climate change, research has shown that climate–smart varieties of rice, together with adjusted management practices, has led to significant increases in yield and sustenance of production in climate change stress-affected areas, including those inhabited by the most impoverished farming communities.²³

The use of traditional agricultural practices involving biomass burning is one of the most serious problems in Thailand's forestry and agriculture sectors from an environmental perspective. Rice, sugarcane and maise are among the key crops involved in the field burning of agricultural residues, which is both a major source of agricultural CO₂ emissions and a serious air pollution (PM2.5) problem in Thailand. According to a report by the Thailand Environment Institute (TEI), it is estimated that burning is involved in 57% of harvested areas for off-season rice, 47% for sugar cane, 35% for maise and 29% for in-season rice, respectively.

Table 3 Calculation of burning areas and PM2.5 emissions of cash crops, 2021

	Harvest	Burning (%)	Dry	PM2.5	Calculation		
Crops	area	/	biomass	(kg/	Dry biomass	PM2.5	
3.000	(1000	Area (1000	(kg/	1600 m ²)	(million	(ten thousand	
	km²)	km²)	1600 m ²)		tons/year)	tons/year)	
Sugarcane	11.46	47% / 5.39	4,272	17.60	23.03	9.49	
Rice (in-season)	54.39	29% / 15.77	329	4.18	5.19	6.59	
Rice (off-season)	6.33	57% / 3.61	329	4.18	1.19	1.51	
Maise	5.85	35% / 2.05	330	3.09	0.68	0.63	

Source: Thailand Environment Institute Foundation, 2021²⁴

https://www.adb.org/sites/default/files/publication/722251/climate-risk-country-profile-thailand.pdf.

²¹ Attavanich, Witsanu. "Effect of climate change on Thailand's agriculture: New results," MPRA Paper No. 118290, 2017, https://mpra.ub.uni-muenchen.de/118290/1/Attavanich%20%282017%29.pdf

²² Asian Development Bank, "Climate Risk Country Profile: Thailand," 2021,

²³ CGIAR, "Climate-Smart Rice," Innovation Explorer, https://www.cgiar.org/innovations/climate-smart-rice/

²⁴ Thailand Environment Institute Foundation, "Management and Reduction of Burning Practice in Agricultural Areas and Policy Recommendations to Tackle PM25 in Thailand," 2022, https://www.tei.or.th/file/library/2022-ABM-ENG_76.pdf.

Another major problem affecting the sector is the excessive use of pesticides and herbicides by farmers, which has a negative impact on the health of the country's population²⁵. Farmers themselves and their family members who work with them in the field are particularly at risk, which, given the proportion of people employed in agriculture, endangers more than a third of the country's population. Despite Thai governmental legislation to control pesticide use, many farmers continue to use banned pesticides, apply higher concentrations than recommended, and do not use adequate personal protective equipment²⁶.

Key sectoral climate policies

Thailand's Climate Change Master Plan (CCMP) (2015-2050) aims for Thailand to be resilient to the impacts of climate change and to achieve low carbon growth through sustainable development. The CCMP Strategy 2, "Mitigation and low carbon development" for agriculture, comprises actions and measures focusing on low-emission agricultural practices with environmental and financial co-benefits; it also increases the capacity of farmers to accommodate GHG reduction technologies and management systems.

Climate change mitigation actions for agriculture are further elaborated in Thailand's 2nd updated NDC²⁷ framework, which is similar to that of LT-LEDS. The LT-LEDS elaborates that mitigation actions in the agricultural sector will likely focus on those with multiple benefits, such as increasing climate resilience, resource efficiency, and productivity. These include better manure management, improved agriculture waste management, improved rice cultivation and practices, increased efficiency in water resource management, smart farming, high-efficiency plant cultivation and livestock, promotion of organic fertilisers, increased renewable energy uses (solar, biofuels and electrification), and energy efficiency in water pumping, threshing, and tilling. Two measures from the agricultural sector (*fixed dome digester*

-

²⁵ Laohaudomchok, W.et al. (2021), "Pesticide use in Thailand: Current situation, health risks, and gaps in research and policy. Human and ecological risk assessment," HERA, 27(5), 1147–1169, 2021,

https://doi.org/10.1080/10807039.2020.1808777

²⁶ Edward P. Rivera and other writers, "Health Risk Related To Pesticide Exposure in the Agriculture System in Thailand: a Systematic Review," Journal of Health Research 30 (2016): S71,

https://doi.nrct.go.th//ListDoi/listDetail?Resolve DOI=10.14456/jhr.2016.69

²⁷ The 2nd updated NDC is conducted with reference to the planned implementation goals of each relevant Ministry in the energy, industrial Processes and Product Use (IPPU), Agriculture, LULUCF, and waste management sectors.

biogas production measures and improvements in rice farming to reduce methane emissions) were also incorporated into the 2nd updated NDC goal and guidelines to reduce GHG emissions. All such measures have already been included in the list of eligible practices under the Thailand Taxonomy.

· Improved rice cultivation practice - Alternate wetting and drying - Mid-season drainage (MSD) - Incorporation of straw - Direct dry seeded rice - Early maturing varieties **Thailand** Thailand · Dome digester net zero CO. net zero GHG 2030 2050 2055 2060 Improved feeds for ruminant animals · Lifestyle changes (change in how we eat) • High genetic merit breed selection · Soil management practices

Figure 1 Net zero GHG emission timeline for the agriculture sector

Source: Office of Natural Resources and Environmental Policy and Planning (2022)²⁸

In October 2023, the Ministry of Agriculture and Cooperatives launched the Climate Change Action Plan for Thai Agriculture $(2023 - 2027)^{29}$. The plan incorporates a GHG reduction target of 1 million tons and includes the following measures:

- encouraging farmers to alternate between wet and dry rice farming;
- using waste from pig manure from the livestock sector to produce biogas to produce electricity;
- reducing the use of chemical fertilisers with the application of the Thai Soil Fertility
 Management;
- aggregating large plots to mix fertilisers for own use.

²⁸ United Nations Framework Convention on Climate Change, "Thailand Long-Term Low Greenhouse Gas Emission Development Strategy (Revised Version)," November, 2022, https://unfccc.int/sites/default/files/resource/Thailand%20LT-LEDS%20%28Revised%20Version%29 08Nov2022.pdf.

²⁹ Office of Agricultural Economics, *Climate Change Action Plan for Thai Agriculture (2023 – 2027)*, Bangkok: Office of Agricultural Economics, February 15, 2023, https://www.oae.go.th/assets/portals/1/files/jounal/2567/Artwork-ENG-04102567.pdf

It is expected that continued adoption of the above measures will reduce GHG emissions from the agricultural sector by up to 2.74 million CO2eq tons by 2030.³⁰

Agricultural industry players also established industry-level climate action targets. For example, in February 2022, the Thai Livestock and Aquatic Consortium implemented a project on the Thai Livestock Technical Consortium for Climate Neutrality, which focuses on the reduction of GHG emissions in the Thai livestock industry chain and sets a target to achieve climate neutrality by 2040. Under the project, a joint working group of 2 parties are established and divided into four groups of selected products: maise, fishmeal, meat cattle and milk cow.³¹

4. Agricultural sub-activities climate materiality assessment

The table below contains information on the emission of activities within the agricultural sector based on data from the Thailand GHG Inventory. Inventory data is extrapolated to ISIC codes used in the Taxonomy. The cut-off line for the materiality of emissions for sectoral analysis is 1% of gross sectoral emission. Therefore, activities that contribute less than 1% to gross emissions are not included in the table.

Table 4 Agricultural sector emission profile

Subsector	IPCC 2006	Agricultural sector GHG	Corresponding proposed activities
	Code	Emissions, total in	under the Thailand Taxonomy
		GgCO2eq (share of total	
		sectoral emission, %)	
Rice Cultivation	31	33,631.60 (50.57%)	Cultivation of rice
Enteric Fermentation	3A	15,364.76 (23.10%)	Livestock production
Direct N2O Emissions	3F	7,669.56 (11.53%)	Growing of perennial and non-perennial
from Managed Soils			crops, incl. corn, mango, pineapples,
			banana etc.
			Growing of sugarcane
			Cultivation of rice

³⁰ OAE (2023): The agricultural sector sets a goal to reduce greenhouse gas emissions by 1 million tons and is preparing to announce the 5-year Agricultural Climate Change Action Plan by the end of this year (News No. 122/2566, dated 9 November 2023).

³¹ UN Global Compact, "Thai Feed Mill Association – ComSummary of Thai Feed Mill Association's Policy and Action on the Environmental Sustainability Communication on Engagement | UN Global Compact," n.d., https://unglobalcompact.org/participation/report/cop/detail/479837.

Subsector	IPCC 2006 Code	Agricultural sector GHG Emissions, total in	Corresponding proposed activities under the Thailand Taxonomy
		GgCO2eq (share of total	
		sectoral emission, %)	
			Cultivation of rubber trees
			Cultivation of cassava
			Cultivation of palm oil trees
Manure Management	3B	3,472.08, (5.22 %)	Livestock Production
Indirect N2O	3G	2,833.66 (4.26%)	Growing of perennial and non-perennial
Emissions from			crops, incl. corn, mango, pineapples,
Managed Soils			banana etc.
			Growing of sugarcane
			Cultivation of rice
			Cultivation of rubber trees
			Cultivation of palm oil trees
			Cultivation of cassava
Field Burning of	3C	1,617.03 (2.43%)	Growing of perennial and non-perennial
Agricultural Residues			crops, incl. corn, mango, pineapples,
			banana etc.
			Growing of sugarcane
			Cultivation of rice
			Cultivation of rubber trees
			Cultivation of palm oil trees
			Cultivation of cassava
Urea Fertilisation	3E	1,294.18 (1.95%)	Growing of perennial and non-perennial
			crops, incl. corn, mango, pineapples,
			banana etc.
			Growing of sugarcane
			Cultivation of rice
			Cultivation of rubber trees
			Cultivation of palm oil trees
			Cultivation of cassava

Source: Thailand's First Biennial Transparency report³²

_

³² UNFCCC, "Thailand's First Biennial Transparency Report under the United Nations Framework Convention on Climate Change," December 26, 2024, https://unfccc.int/documents/645098

Rice cultivation, which accounts for the highest greenhouse gas emissions, is also included as a sub-activity in this Taxonomy. Furthermore, enteric fermentation and manure management are both covered under the **livestock production** activity in this Taxonomy. The remaining climate-material activities are related to emissions associated with soil tillage and fertiliser application. These two categories are relevant for all proposed plant-growing activities included in this Taxonomy, and relevant mitigation practices will be proposed for all types of agricultural activities. Fertiliser production itself is not covered by the Taxonomy, but the production of major chemical components of fertilisers (ammonia, nitric acid, and others) is covered by the basic chemicals' subsector of Manufacturing criteria.

It is also proposed that sugarcane, cassava, rubber tree cultivation and oil palm cultivation be identified as separate activities because of the special circumstances that set them apart from other crops. The unsustainable cultivation of these crops has become a particularly serious problem in Southeast Asia because, in past years, it has often resulted in the destruction of natural forests, damage to ecosystems, and destruction of biodiversity³³.

Furthermore, both the incineration of sugarcane waste and "slash and burn" practices significantly contribute to air pollution with higher PM 2.5 particle concentrations and negatively impact the overall environmental situation in Thailand³⁴. Emissions associated with this practice also contribute to the category "Field Burning of Agricultural Residues" in **Table 3**.

Moreover, oil palm and rubber tree cultivation are also associated with deforestation³⁵ and the burning of agricultural residues is causing substantial environmental damage. Concurrently, local sustainability-minded industrial associations like Thailand Sustainable Palm Oil Alliance³⁶ are actively looking for ways to reduce potential negative impacts, while external actors like the European Union are introducing stringent regulations that could potentially limit the

_

³³ Kanokwan Saswattecha et al., "Assessing the Environmental Impact of Palm Oil Produced in Thailand," Journal of Cleaner Production 100 (August 1, 2015): 150–69, https://doi.org/10.1016/j.jclepro.2015.03.037.

³⁴ The Nation, "Crop Burning Shortening Average Life Expectancy," The Nation Thailand, September 15, 2023, https://www.nationthailand.com/thailand/general/40031056.

³⁵ Aruna Chandrasekhar, "Rubber Drives 'At Least Twice' as Much Deforestation as Previously Thought," Carbon Brief, November 1, 2023, https://www.carbonbrief.org/rubber-drives-at-least-twice-as-much-deforestation-as-previously-thought/.

³⁶ Fauzi Nash, "RSPO Launches the Thailand Sustainable Palm Oil Alliance With Five Partner Organisations," Press release, Roundtable on Sustainable Palm Oil (RSPO), November 29, 2022, https://rspo.org/press-release-rspo-launches-the-thailand-sustainable-palm-oil-alliance-with-five-partner-organisations/.

export potential of Thai rubber and palm oil if not dealt with properly. As a consequence, tailored practice lists for oil palm and rubber production will be separately developed for the Taxonomy to provide a set of tailored criteria that can address the sustainability challenges associated with the two crops.

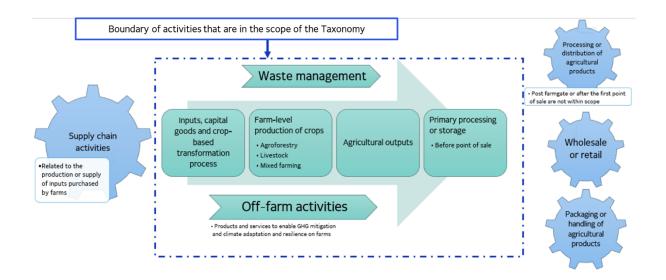
Apart from the crops mentioned above, all other types of agricultural crops may be grouped under one generic activity in Taxonomy, i.e. "Sustainable perennial or non-perennial crops, incl. corn, mango, pineapples, banana, etc." because of the similarity of farming practices and sustainability challenges associated with them. This generic activity encompasses growing fruits and vegetables, coconuts, and all other crop types that do not fall into other crop-specific activity categories.

4.1 Agricultural criteria scope

The boundary of the eligible crop, livestock production, and aquaculture systems within Thailand Taxonomy is "farmgate to farmgate," meaning that they cover everything that happens within the farm. These boundaries can include non-contiguous lands and production systems. The farm is treated as the **production unit** and thus includes areas such as any forest holdings linked to the agricultural production system by ownership or ecosystem function. Non-contiguous production activities are eligible if they are related to farm production prior to the sale of the product (such as storage, manure management, or composting) and managed by the production unit. These criteria are neutral regarding the future use of crops and livestock once they have left the agricultural production unit (except for the provision of traceability systems).

Users are expected to clearly define the land boundaries of the production unit. Normally, this will be the farm holding, including riparian buffer zones, conservation set-asides, grassland, or forest areas. For clarification, conservation and set aside areas may be considered as part of the agriculture production unit if they constitute part of the land property of the farm production unit owned or leased by the same unit as the production property and are not used as offsets for other GHG emissions sources.

In particular, the proposed criteria cover:


- farm-level production of crops (including agroforestry) and livestock, including mixed farming;
- activities off-farm that provide products or services to enable GHG mitigation and climate adaptation and resilience on farms;
- inputs, capital goods, crop-based transformation processes;
- agricultural outputs;
- waste management;
- primary processing or storage before the point of sale.

The proposed criteria do not cover:

- the production or supply of inputs purchased by farms;
- the processing or distribution of agricultural products post the farmgate or after the first point of sale;
- packaging or handling of agricultural products that left the farm (on-farm basic packaging and storage are included);
- wholesale or retail.

The scope defined above for agriculture sector criteria in Thailand's taxonomy is illustrated in Figure below.

Figure 2 Agricultural activities within the scope of Agricultural criteria

From the point of view of types of produce, agricultural criteria cover all crops, plants, livestock and aquaculture products of industrial importance to Thailand. The practices lists are added to Annex I include separate lists for rice, sugarcane, oil palm, rubber trees, cassava and all one general list of practices for other plants that are industrially planted in Thailand. Livestock criteria cover all major agricultural animals used in Thailand, including cattle, poultry, and other types of livestock. Meanwhile, aquaculture encompasses various aquatic species such as fish, shrimp, shellfish, and squid.

Eligible activities and associated assets and projects include those integral to the whole production unit (such as land purchase costs for an entire farm) or only a part of the production unit (such as equipment or infrastructure for particular aspects of production or the purchase of additional land for expansion of the farm). The criteria vary according to whether the use of proceeds covers the whole production system or a component of it.

4.2 Agricultural criteria methodological approach

The approach suggested for the agricultural sector in Thailand is different in mechanics from the traffic lights system used for other sectors of the taxonomy. This approach aligns with agricultural sector methodologies in other taxonomies and incorporates additional content to enhance the utility and applicability of the eligibility criteria within the country's context. The suggested approach is the culmination of extensive, multi-year research conducted by Climate Bonds. It has been developed on the basis of Climate Bonds Agricultural Criteria³⁷ and specifically tailored by the local consultants' team to ensure that it meets the unique needs and challenges of the agricultural sector in Thailand.

This approach is based on the understanding that, at present, collecting, analysing and evaluating accurate data on the impact of different practices on key agricultural climate indicators is extremely challenging, not only for individual farmers but also for government agencies. The lack of reliable, comparable data makes defining precise science-based boundaries for the green, amber and red categories virtually impossible without years of country-specific research. Against this background, the Climate Bonds Initiative has developed

³⁷ Climate Bonds Initiative. Climate Bonds Standard: Agriculture Criteria., https://www.climatebonds.net/files/files/standards/agriculture/Agriculture%20Criteria%2020210622v3.pdf.

a practice-based approach that enables farmers to make a significant contribution to agricultural sustainability without the need for overly complex and costly measurements.

Definition of Agricultural practice.

An agricultural practice refers to the methods and techniques used in farming to cultivate crops and rear animals. Practices can be sustainable or unsustainable, meaning that they can either contribute to taxonomy objectives (like the application of nature-based solutions³⁸) or be harmful to them (like slash-and-burn practices). The taxonomy incentivises the application of sustainable practices given in Annex and disincentivises from applying unsustainable practices (addressed through **Table 6**).

The agricultural sector is also more heterogeneous in terms of its impact on the ecosystem and climate than other sectors, and therefore, sustainable practices proposed under a practice-based approach can contribute not only to the objective of climate change mitigation but also to the objectives of climate change adaptation, sustainable use and protection of marine and water resources, pollution prevention and control, protection and restoration of biodiversity and ecosystems and to circular economy promotion. In most cases, each recommended practice contributes to several objectives at once.

A practice-based model is constructed as a three-tiered system of basic, intermediate and advanced practices where practices grow in complexity and sophistication from one level to another. It is recommended that practices from the next tier should be implemented after all practices from the previous tier are adopted. In addition, the complementary adoptions section includes measures that can benefit any farm at any stage of development. Tiers differ in the following ways:

- Basic practices: measures that are relatively low-cost and not very complex. They generate benefits by enabling more efficient use of resources and environmental preservation with respect to the traditional extensive model.
- Intermediate practices: measures and technologies of greater complexity than the basic ones, incorporating greater technical knowledge and investment.

-

³⁸ Nature-based solutions are actions to protect, conserve, restore, and sustainably use and manage ecosystems in a way that addresses social, economic and environmental challenges while simultaneously benefiting human well-being and biodiversity. https://www.wri.org/insights/what-exactly-are-nature-based-solutions

- Advanced practices: changes that fundamentally modify the production model, integrating techniques, knowledge and inputs that allow for the highest productive and environmental yields.
- Complementary adoptions: these are specific technologies that are beneficial to any farm at any stage of its development. The manager of the farm may choose one of the complementary adoptions as one of the practices to implement under the transformation project.

The Taxonomy includes (under Annex) 8 lists of sustainable practices recommended for rice, sugarcane, oil palm, rubber tree, cassava, the remaining plants, livestock and aquaculture. It is important to note that rice, sugarcane, oil palm, rubber tree and cassava producers can also use the practices listed in the Annex (Sustainable perennial or non-perennial crops, incl. corn, mango, pineapples, banana etc.). The use of general practices for these crops will also be considered consistent with the Taxonomy, although they might be not so effective for a certain crop as specific practices from Tables in Annex.

The Taxonomy also allows to certify finished products that meet the requirements of Thai, regional and international organic, sustainable, and climate-focused agricultural certification labels (**Table 5**), which will ultimately facilitate the adoption of the Taxonomy by domestic users.

Taxonomy compliance also involves ensuring that the ecosystem of the production unit is not harmed, and a farm manager contributes to at least one of the objectives of the taxonomy. To meet these two conditions, **Table 6 and 7** were designed. **Table 6** is a Do-No-Significant-Harm section that is designed to ensure that at the time of the start of the transformational project and during it, a farm manager does not apply and does not plan to apply any practices that harm climate, environment, biosphere, or taxonomy objectives.

Table 7 is aimed at ensuring that the implementation of practices from Annex contributes to the achievement of at least one taxonomy objective by contributing to the achievement of a certain desired result described in the "Description of contribution" column of the table. As part of the preparation of an Integrated Farm Management Plan (IFMP), the farm manager must indicate to what result, indicated in this table, the application of practices from Annex, selected by the farm manager for the transformational project, leads. For further information on IFMP, please see section Integrated Farm Management Plan.

This structure aims to enhance the compatibility Thailand Taxonomy with other national taxonomies. The best practice approach on which the criteria are based is aligned with existing taxonomies in Rwanda, Colombia, Mexico, and Panama as well as (to a certain extent) Singapore. This facilitates data integration and comparison.

5. Taxonomy application scheme

The main application of the taxonomy in practice in the agricultural sector is its application to the **transformational project**. Such a project implies the transition of the farm from its current state to a more climatically and environmentally sustainable state through the application of sustainable practices, making a significant contribution to the objectives of the taxonomy and preventing harm to the ecosystem and biodiversity of the production unit.

There are two basic options under which the manager of the farm can align a transformational project with the Taxonomy:

Option 1: Through the preparation of the IFMP

Step 1. Provide a statement of the farm's compliance with the Thai national laws and regulations relevant to the farm.

Even though all activities across all sectors need to comply with national laws and regulations, the idea of this requirement in agriculture is to provide further guidance to financial sector users to check compliance against specific norms (e.g., the farm is not located in a forest or a protected area) before evaluating if it is sustainable.

The relevance of different laws and regulations is defined by the manager of the farm and assessed by the person or agency checking the validity of the alignment.

Step 2. Define the activity to be assessed.

A transformation project can be carried out for the following activities that are included under the Agricultural section of the Taxonomy: (See the Tables in Annex)

- Growing of perennial or non-perennial crops, incl. corn, mango, pineapples, banana etc.
- Growing of rice
- Growing of sugarcane

- Growing of oil palm
- Growing of rubber tree
- Growing of cassava
- Livestock production
- Aquaculture production

Crop-specific tables include practices that provide the best results for the specific crops, but **table 9** with general practices for perennial and non-perennial crops, incl. corn, mango, pineapples, banana etc. (See the Tables in Annex) can be utilised for these crops as well.

Step 3. Select at least two practices from Annex tables

For a transformation project to be aligned with the taxonomy, at least two sustainable agricultural practices from the ones listed in the Annex tables including at least one non-basic (intermediate or advanced) practice needs to be selected for implementation throughout it. Complementary adoptions are not considered practices and can not be counted towards compliance with this requirement (they are minor technological interventions that are not sufficient to qualitatively improve the situation on the farm, but can be useful as a supplement).

Each practice consists of three elements:

- **Title**. This title must be indicated in the IFMP.
- **Description**. The description includes all actions that must be implemented to consider the practice fully implemented.
- Eligible inputs. The procurement of these inputs is aligned with the taxonomy, meaning that they may be financed through green or sustainable debt or programmes tied to taxonomy-aligned agriculture. At present, only these inputs can be financed to implement a certain practice.

Step 4. Prepare and adopt an IFMP

An IFMP is a document that confirms that the farm manager:

- Has chosen at least two practices and is intended to implement them in a proper manner in order to achieve some results relevant to the objectives of the Taxonomy;

- has not now and will not, by implementing the transformation project, cause significant damage to the ecosystem of the production unit, climate, and the environment as a whole;
- will make a significant contribution to one or more of the objectives of the taxonomy as part of the transformation project.

An IFMP has no established structure (the structure might be defined either by the farm manager or by the institution verifying the compliance with the Taxonomy), but as a minimum, it includes the following sections:

- Objective of the transitional project;
- Current situation on the farm;
- The nature of transition;
- Expected results of the project;
- Environmental damage prevention measures taken by the farm manager;
- Taxonomy objectives and contribution actions will be taken by the farm manager throughout the project.

A detailed description of the IFMP content can be found in Section IFMP.

Option 2: Getting a credible international or national certification

Alternatively, the manager of the farm may choose to substitute the preparation of the IFMP with a credible international or national certification scheme from one of the recognised certification providers. These international certifications include sufficiently stringent requirements comparable in stringency to those required of the farm manager under Option 1. If the production of the farm or the farm itself is certified under one of these, the farm manager does not need to provide an IFMP but still needs to implement at least two practice from Annex tables. Here is the list of available certification schemes:

Table 5 List of eligible certification schemes

Certification scheme	Associated crops
Cocoa Certification — Conservation	Cocoa
Alliance ³⁹	
Certification Scheme for Organic	General perennial and non-perennial crops,
Agriculture (Thailand) ⁴⁰	incl. corn, mango, pineapples, banana etc.
Thai Agricultural Standard Organic	General perennial and non-perennial crops,
Agriculture: The production, Processing,	incl. corn, mango, pineapples, banana etc.
Labelling and Marketing Of Organically	
Produce And Products (TAS 9000-2021) 41	
UTZ Certified and Rainforest Alliance ⁴²	General perennial and non-perennial crops,
	incl. corn, mango, pineapples, banana etc.
International Sustainability and Carbon	General perennial and non-perennial crops,
Certification ⁴³	incl. corn, mango, pineapples, banana etc.
Thai Quality Good Agricultural Practice (Q	General perennial and non-perennial crops,
GAP) ⁴⁴	incl. corn, mango, pineapples, banana etc.
Singapore Good Agricultural Practice (SG	General perennial and non-perennial crops,
GAP) Certification ⁴⁵	incl. corn, mango, pineapples, banana etc.
Global GAP ⁴⁶	General perennial and non-perennial crops,
	incl. corn, mango, pineapples, banana etc.;

³⁹ Conservation Alliance, "COCOA CERTIFICATION,", n.d., https://conservealliance.org/cocoa-certification/.

⁴⁰ Organic Agriculture Certification Thailand, "ACT Organic- Services,", n.d., https://www.actorganic-cert.or.th/

⁴¹ National Bureau of Agricultural Commodity and Food Standards Ministry of Agriculture and Cooperatives, "Organic Agriculture: The Production, Processing, Labelling and Marketing of Organic Produce and Products", February 21, 2022, https://acfs-backend.acfs.go.th/storage/ProductStandards/Files/20240529155100_828699.pdf

⁴² Rainforest Alliance, "UTZ Certification (Now Part of the Rainforest Alliance) | Rainforest Alliance," November 21, 2022, https://www.rainforest-alliance.org/utz/.

⁴³ ISCC, "ISCC System – Solutions for Sustainable and Deforestation Free Supply Chains," n.d., https://www.iscc-system.org/.

⁴⁴ National Bureau of Agricultural Commodity and Food Standards, "Thai Agricultural Standard Tas 9001-2013: Good Agricultural Practices for Food Crop," report, *National Bureau of Agricultural Commodity and Food Standards*, 2013, https://www.acfs.go.th/standard/download/eng/GAP_Food_Crop.pdf.

⁴⁵ Singapore Government Singapore Food Agency, "SFA | Singapore Good Agricultural Practice (SG GAP)," n.d., https://www.sfa.gov.sg/food-farming/quality-assurance-schemes/singapore-good-agriculture-practice-(sg-gap).

⁴⁶ "Global G.A.P- Global smart farm assurance solutions," GlobalG.A.P, n.d., https://www.globalgap.org

Certification scheme	Associated crops
	Livestock production; Aquaculture
	production.
Farm Sustainability Assessment (FSA) ⁴⁷	General perennial and non-perennial crops,
	incl. corn, mango, pineapples, banana etc.;
Singapore Clean and Green Certification 48	General perennial and non-perennial crops,
	incl. corn, mango, pineapples, banana etc.
IFOAM Standard ⁴⁹	General perennial and non-perennial crops,
	incl. corn, mango, pineapples, banana etc.;
	Aquaculture production.
Organic label of the National Bureau of	General perennial and non-perennial crops,
Agricultural Commodity and Food	incl. corn, mango, pineapples, banana etc.
Standards ⁵⁰	
Proterra Foundation 51	General perennial and non-perennial crops,
	incl. corn, mango, pineapples, banana etc.
RSB Standard ⁵²	General perennial and non-perennial crops,
	incl. corn, mango, pineapples, banana etc.
Climate Bonds Protected Agriculture and	General perennial and non-perennial crops,
Water Infrastructure Criteria ⁵³	incl. corn, mango, pineapples, banana etc.
USDA Organic Label ⁵⁴	General perennial and non-perennial crops,
	incl. corn, mango, pineapples, banana etc.

_

https://www.climatebonds.net/standard/protected-agriculture.

⁴⁷ SAI Platform: Farm Sustainability Assessment, https://saiplatform.org/fsa/

⁴⁸ Singapore Government Singapore Food Agency, "SFA | Singapore Clean and Green Urban Farms (SG C&G)," n.d., https://www.sfa.gov.sg/food-farming/quality-assurance-schemes/singapore-clean-and-green-urban-farms-(sg-c-g).

⁴⁹ "IFOAM - Organics International | Home," IFOAM, n.d., https://www.ifoam.bio/.

 $^{^{50} \ \}text{``Labeling Organic Products | Agricultural Marketing Service,''} \ \text{n.d., https://www.acfs.go.th/standard/list}$

⁵¹ ProTerra Foundation, "The ProTerra Network | ProTerra Foundation," ProTerra Foundation, April 9, 2024, https://www.proterrafoundation.org/the-proterra-standard/.

⁵² "Framework – RSB," n.d., https://rsb.org/framework/.

⁵³ "Protected Agriculture in Mexico," Climate Bonds Initiative, April 11, 2023,

⁵⁴ "Labeling Organic Products | Agricultural Marketing Service," n.d., https://www.ams.usda.gov/rules-regulations/organic/labeling.

Certification scheme	Associated crops		
Naturland Standards ⁵⁵	General perennial and non-perennial crops,		
	incl. corn, mango, pineapples, banana etc.		
EU Organic Regulations ⁵⁶	General perennial and non-perennial crops,		
	incl. corn, mango, pineapples, banana etc.		
Roundtable of Sustainable Palm Oil 57	Palm oil		
Indonesian Sustainable Palm Oil ⁵⁸	Palm oil		
Malaysia Sustainable Palm Oil ⁵⁹	Palm oil		
Palm Oil Innovation Group ⁶⁰	Palm oil		
Forest Sustainability Council (FSC)	Rubber trees		
Programme for the Endorsement of Forest	Rubber trees		
Certification (PEFC)			
Sustainable Rice Platform ⁶¹	Rice		
T-VER-P-METH-13-08 ⁶²	Rice		
Climate-Friendly Rice Certification	Rice		
(AgriCapture) ⁶³			
Thai Agricultural Standard for	Rice		
Sustainable Rice (TAS 4408-2022) ⁶⁴			

https://agriculture.ec.europa.eu/farming/organic-farming/organic-production-and-products en.

⁵⁵ Minou Yussefi-Menzler, "Naturland Standards," Naturland, n.d., https://www.naturland.de/en/naturland/what-we-stand-for/quality/naturland-standards.html.

⁵⁶ "Organic Production and Products," Agriculture and Rural Development, March 4, 2024,

⁵⁷ Roundtable on Sustainable Palm Oil (RSPO), "A Global Partnership to Make Palm Oil Sustainable - Roundtable on Sustainable Palm Oil (RSPO)," May 17, 2024, https://rspo.org/.

⁵⁸ ISPO, "Indonesia Sustainable Palm Oil", n.d., https://www.indonesiapalmoilfacts.com/ispo/

⁵⁹ "About MSPO — MSPO," MSPO, n.d., https://mspo.org.my/about-mspo.

⁶⁰ "Palm Oil Innovation Group | a Journey Towards Responsible Palm Oil," n.d., https://poig.org/.

^{61 &}quot;Sustainable Rice Platform", n.d., https://sustainablerice.org/

⁶² "T-VER Enhanced Good Practices in Paddy Rice Field" https://ghgreduction.tgo.or.th/en/premium-t-ver-methodology/methodology/reduction-absorption-and-removal-of-greenhouse-gases-from-the-forestry-and-agriculture-sectors/item/5094-enhanced-good-practices-in-paddy-rice-field.html

⁶³ AgriCapture, "Climate Friendly Rice Certification", n.d., https://agricapture.com/certification/

⁶⁴ National Bureau of Agricultural Commodity and Food Standards et al., "THAI AGRICULTURAL STANDARD TAS 4408-2022 SUSTAINABLE RICE," *National Bureau of Agricultural Commodity and Food Standards*, May 17, 2022, https://www.acfs.go.th/files/files/commodity-standard/20221011102422_823691.pdf.

Certification scheme	Associated crops
Roundtable on Responsible Soy ⁶⁵	Soy
Bonsucro ⁶⁶	Sugarcane
Smartcane BMP ⁶⁷	Sugarcane
Aquaculture Stewardship Council ⁶⁸	Aquaculture production
Best Aquaculture Practices ⁶⁹	Aquaculture production
Premium T-VER ⁷⁰	
Agricultural Product Standards: Good	Livestock production
Agricultural Practices ⁷¹	
Thai Agricultural Standard Organic	Livestock production
Livestock ⁷²	
Better Cotton Initiative (BCI) ⁷³	Cotton
Soy Sustainability Assurance Protocol	Soy
(SSAP) ⁷⁴	

If this option of chosen, steps 1, 2 and 3 are the same as in the Option 1, but the step 4 is replaced by obtaining one of the certificates mentioned above.

-

^{65 &}quot;Roundtable on Responsible Soy", n.d., https://responsiblesoy.org/?lang=en

^{66 &}quot;Bonsucro", n.d., https://bonsucro.com/

⁶⁷ "Smartcane BMP", n.d., https://smartcane.com.au/

⁶⁸ Aquaculture Stewardship Council." https://asc-aqua.org/

⁶⁹ Best Aquaculture Practices." https://www.bapcertification.org/

⁷⁰ Thailand Greenhouse Gas Management Organization, "Premium T-VER" https://ghgreduction.tgo.or.th/en/premium-t-ver.html.

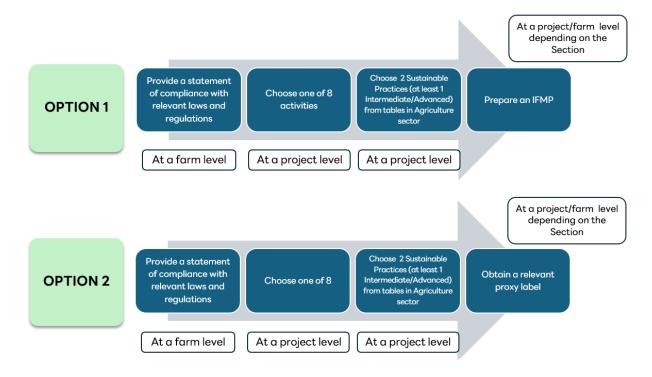
⁷¹ Agricultural Product Standards: Good Agricultural Practices, https://certify.dld.go.th/certify/index.php/th/2016-05-01-14-47-42/2016-05-03-02-04-15/1067-2019-09-02-03-31-36

⁷² Thai Agricultural Standard TAS 9000-2005 https://www.acfs.go.th/standard/download/eng/Organic Agriculture2.pdf

⁷³ Better Cotton Initiative, https://bettercotton.org/

⁷⁴ Soy Sustainability Assurance Protocol, https://ussec.org/resources/u-s-soy-sustainability-assurance-protocol-ssap-2022/

5.1 Eligible expenditures and produces


Regardless of the chosen option, alignment with the taxonomy allows to mark as taxonomyaligned the following items and revenue streams:

- Expenditures required to implement the transformation project, including items and services from the "eligible inputs" column of each tables of Annex;
- Expenditures required to make substantial contribution to measures;
- Revenues coming from selling farm production <u>after</u> the transformation project was completed. Please note that only revenues from farm products that were transformed throughout the transformation project are considered taxonomy aligned. For example, if the farm grows corn and soy together and the manager carries out a transformation project aimed at increasing biofertiliser input for soy (or obtained Roundtable on Responsible Soy certification), only soy and revenues associated with selling soy are considered taxonomy aligned. This product taxonomy alignment lasts two years⁷⁵, counting from the date when the transformation project was fully implemented.

Do-No-Significant-Harm section measures from Table 6 must be implemented before the start of the transformation project and be continued throughout the project implementation process. Financial inputs required to provide them thus cannot be aligned with the Taxonomy.

⁷⁵The two-year limitation is intended to incentivize farmers to adopt more sustainable practices. After this two-year period, farms can either repeat the same practices or implement at least two other practices to maintain their green revenue status.

Figure 3 Agricultural Criteria Application Scheme

5.2 Integrated Farm Management Plan

There is no standard template for the Farm Management Plan, and different formats⁷⁶ can be adopted depending on the institution requesting it (for example, a government agency that supports farmers whose projects and farm practices align with the Taxonomy). Regardless of what template is used, IFMP should include the following information:

• Objectives of the transformational project: a general description of what changes are planned to be achieved on the farm by implementing the practices from Annex of the tables and fulfilling the requirements of **Table 6 and 7**; what is the expected result of the project.

South Africa: South Africa Environmental Management Plan, "Environmental Management Plan", n.d.

https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fsiza.co.za%2Fwp-content%2Fuploads%2F2023-

Draft Environmental-Management-Plan.docx&wdOrigin=BROWSELINK

New Zealand: New Zealand Farm Environment Plan templates, "Farm Environment Plan Templates," FAR Research, n.d.,

https://www.far.org.nz/resources/farm-environment-plan-templates.or

Australia: Australia Department of Agriculture, Generic Environmental Management Plan, n.d.,

 $https://agriculture.vic.gov.au/__data/assets/pdf_file/0004/925150/Broiler_Generic-Environmental-Management-Plan.pdf.$

⁷⁶ For example, one can look at the IFMP templates from

- Current situation on the farm: In this section, the farmer should describe his or her farm. The description of the farm should include a geophysical map of the area accompanied by supportive maps or GPS coordinates. It should also include information on the natural environment surrounding the farm, such as the presence of high-carbon or high-biodiversity ecosystems nearby. Additionally, it should include details about the production model yields. This part may also answer the following questions:
 - Natural resources stocktake. What natural resources (soil quality, vegetation, water sources, etc.) are available on the farm and in the surrounding area?
 - Information about the fertilisers and pesticides the farm manager uses. What kind of fertilisers are used, how and why? What amount of fertiliser per square metre is needed for your farm based on soil, climatic conditions, and crop type?
 - Climate-relevant data. Are any data on climate vulnerability or greenhouse gas emissions associated with your farm available?
 - **Existing practices**. Are there any conservation practices that have already been integrated into the production system?
- The nature of transformation: in this section, the farmer should indicate what changes will be implemented throughout the project based on the adoption of the selected practice(s), what agricultural inputs the selected practice(s) will require, and what the expected environmental impacts will be for the farm and its surrounding environment; what the expected changes in the farming system will be as a result of the adoption of the selected practices (i.e. lower fertiliser use, increase agricultural output, crop diversification, increased biodiversity, enhanced energy efficiency etc).
- Environmental harm prevention: this section should confirm that the transformational project will not result in any of the adverse effects reflected in Table
 6 or any other adverse effects that may be materially detrimental to the objectives of the Taxonomy.
- Objectives contribution: in this section, the farmer should describe how selected practices contribute to one of the objectives of the taxonomy described (in relation to the agricultural sector) in **Table 7**. Given that more than one practice can be chosen and many practices may contribute to more than one objective of the Taxonomy, the

specific wording of the contribution is always left to the farmer's discretion. The statement should, however, clearly reflect the relevance of the transformational project to the overall objectives of the Taxonomy. **Table 7** gives shortened examples how this contribution can be expressed for different objectives.

5.3 Do No Significant Harm Measures of Agriculture Sector

Table 6 Do No Significant Harm Measures: DNSH

Environmental	Do-No-Significant-Harm Measures
objectives	
Climate Change	• The project should not lead to conversion of high carbon
Mitigation	stock lands ⁷⁷ .
	• Any slash-and-burn practices or burning of agricultural residues
	must be avoided at any stage.
	 Avoid overtelling, overgrazing and excessive application of
	fertilisers.
	• Avoid unnecessary waste of food, maximise animal diet
	efficiency from the points of view of nutritional value and GHG
	emission reduction potential
Climate Change	Clear boundaries and critical interdependencies between the
Adaptation	agricultural production unit and the ecosystem within which it
	operates must be identified.
	 An assessment has been undertaken to identify the key
	physical climate hazards to which the production unit will be
	exposed and vulnerable over its operating life.
	• The measures that have been or will be taken to address
	those risks mitigate them to a level so that the production
	unit is able to manage changing climatic conditions over its
	operational life.

_

⁷⁷ Definition of high carbon stock land: <a href="https://highcarbonstock.org/what-is-the-high-carbon-stock-approach/#:~:text=The%20'High%20Carbon%20Stock'%20in,carbon%20dioxide%20from%20the%20atmosphere. Can be proven by submission of maps (see Global Forest Watch maps), georeferenced photographs or satellite imagery of land use change and burning, for example. Forest inventory surveys or other formal government data can also be used.

Environmental	Do-No-Significant-Harm Measures
objectives	
	• Aquaculture only: Avoid using species that are intolerant
	and/or vulnerable to temperature fluctuations, salinity
	changes, and other climate-related stressors to reduce
	vulnerability to climate change impacts.
Sustainable use	Protect riparian corridors, wetlands, and other water bodies.
and protection of	Control pollution of watercourses and avoid the discharge of
marine and water	sediments into water bodies, nutrients, and agrochemicals.
resources	Regulate the volume of water abstracted and returned to
	natural sources, improving the efficiency of use per unit of
	production.
	Maintaining appropriate stocking densities to reduce the
	pressure on local water resources and minimize the
	accumulation of waste and uneaten feed, which can lead to
	eutrophication.
Pollution	Prevent physical degradation, e.g., erosion and soil
prevention and	compaction.
control	• Prevent chemical degradation, e.g. salinisation, acidification,
	alkalinisation and pollution.
	Avoid biological degradation, e.g. loss of organic matter,
	imbalance of biological activity and mineralisation processes.
	Avoid uncontrolled discharge of wastewater into natural water
	bodies, uncontrolled and excessive release of nutrients,
	chemicals, and organic matter.
Protection and	Avoid habitat destruction: burning, felling or fragmentation of
restoration of	natural vegetation.
biodiversity and	• Protect areas of natural forest. Set aside at least 40% of the
ecosystems	forest for regeneration or conservation.

Environmental	Do-No-Significant-Harm Measures
objectives	
	Avoid the introduction of non-native species. Native species
	are allowed. Naturalised species with proven benefits in
	restoration programmes are allowed.
	Control the use of agrochemicals (fertilisers and pesticides)
	because, in excess, they cause the decline of populations of
	beneficial organisms in terrestrial and aquatic ecosystems.
Livestock-related	Provide reasonable level of animal welfare, avoid cruel and
DNSH (applicable	inhumane practices. Provide the animal with Five Freedoms. ⁷⁸
to livestock only)	
Aquaculture-	Ensure minimal use of antibiotics in line with the latest FAO
related DNSH	guidelines ⁷⁹ , SeaBOS ⁸⁰ or scientific publications ⁸¹ .
(applicable to	
aquaculture only)	

 $\underline{https://openknowledge.fao.org/server/api/core/bitstreams/bf43d03e-11bf-47d1-83c2-fd02cc94baa4/content.}$

⁷⁸ National Archives, "The Five Freedoms," The UK Government Web Archive,

https://webarchive.nationalarchives.gov.uk/ukgwa/20121010012427, http://www.fawc.org.uk/freedoms.htm

⁷⁹ Hernández Serrano, Pilar. *Responsible Use of Antibiotics in Aquaculture*. FAO Fisheries Technical Paper No. 469. Rome: Food and Agriculture Organization of the United Nations, 2005.

⁸⁰ SeaBOS Task Force III. *Antibiotics Stewardship Roadmap*. Stockholm: Stockholm Resilience Centre, October 2021. https://seabos.org/wp-content/uploads/2021/10/Antibiotics-Roadmap.pdf.

⁸¹ P. Smith, *7 - Antibiotics in aquaculture: reducing their use and maintaining their efficacy*, Editor(s): Brian Austin, In Woodhead Publishing Series in Food Science, Technology and Nutrition, Infectious Disease in Aquaculture, Woodhead Publishing, 2012, Pages 161-189, ISBN 9780857090164, https://doi.org/10.1533/9780857095732.2.161.

Table 7 Examples of sustainable contribution to the objectives of Thailand Taxonomy

Environmental	Description of	Examples of contribution
objective	contribution	
Climate	Implemented	Selected measures help to reduce methane
change	measures lead to the	emissions in treatment plants and water-
mitigation	reduction of GHG	intensive crops (e.g. rice, coffee).
	emission or prevent	Selected measures help to increase the use
	loss of carbon stocks	of higher carbon fixing plant species, protect
		the forests, coastal and marine habitats
		(blue carbon). They involve introduction of
		agroforestry systems, reduction of methane
		emissions in agricultural waste management
		or reduce emissions from biomass burning.
		Selected measures help to increase and
		sequester carbon above and below ground,
		e.g. through good tillage practices and cover
		with improved pastures and woody species
		in livestock systems. They also decrease
		NO2 emissions in fertilised soils.
		Selected measures help to restore
		degraded areas that once were high-carbon
		stocks.
Climate	Implemented	Selected measures help to improve the
change	measure improve	resilience of ecosystems to climate
adaptation	production unit's	variability and enhance their climate
	resilience to the	regulating services (e.g. by protecting
	effects of climate	mangroves, forests, and wetlands).
	change at the same	Selected measures help to reduce pressure
	time not harming the	on the biological balance and its climate
	climate resilience of	resilience. Climate-tolerant agricultural
	the ecosystems within	varieties, breeds and forest species will be
	which it is carried out.	used.

Environmental	Description of	Examples of contribution	
objective	contribution		
Sustainable	Implemented	Selected measures help to increase the	
use and	measures protect	stabilisation of aquifer recharge areas. They	
protection of	water sources,	help to reduce the sedimentation potential	
marine and	optimise utilisation of	of reservoirs that allow water regulation.	
water	water and prevent its	Selected measures help to adjust water	
resources;	contamination	planning criteria according to the	
		assessment of climate scenarios and their	
		adaptation to applicable climate adaptation	
		plans.	
		Selected measures help to protect and	
		optimise water supply for other uses, such	
		as protecting ecological minimum flows (for	
		freshwater and coastal ecosystem	
		functions), especially in periods of water	
		scarcity.	
		Selected measures help to manage runoff	
		in times of excessive precipitation.	
Protection	Implemented	Selected measures help to encourage the	
and	measures help to	use of native species or species compatible	
restoration of	protect or restore	with the original habitat.	
biodiversity	biodiversity and	Selected measures help to combat pre-	
and	stability of the	existing invasive species without	
ecosystems;	ecosystem where the	deteriorating the biological balance.	
	production unit is	Selected measures help to increase species	
	situated	diversity and abundance, seeking to connect	
		non-degraded fragments and recover	
		already attenuated areas under a biological	
		corridor and buffer zone approach. Involve	
		planting and maintenance of vegetation:	

Environmental	Description of	Examples of contribution
objective	contribution	
		trees, shrubs, mangroves, and other natural
		ecosystems.
Pollution	Implemented	Selected measures help to adequately
prevention	measures prevent air,	collect, recycle, clean and dispose
and control;	soil or ecosystem	containers of pesticides and chemicals.
	pollution	Selected measures help to develop a
		contaminated water treatment system to
		treat waste and nutrients.
		Selected measures help to reduce or stop
		the burning of crops such as the
		management and processing of agricultural
		residues
Promotion of	Implemented	Selected measures help to produce fertiliser
resource	measures contribute	and biogas from manure and other organic
resilience and	to keeping agricultural	waste.
transition to a	biomass, waste and	Selected measures help to increase organic
circular	residues from	matter content in the soil by incorporating
economy.	agricultural activities	residues from crop production.
	as reusable resources	

Forestry

6. Forestry background

As of 2021, the forest area in Thailand was estimated at 102,212,434 rai or 31.59% of the country's total area.⁸² The majority of Thailand's forest land is characterised as naturally regenerating forests, followed by plantation forests.⁸³ Thailand's forest areas are categorized into three main types: conservation forests, national reserved forests, and mangrove forests.⁸⁴ Conservation forests account for approximately 64% of the total forest area in Thailand, national reserved forests make up about 34%, and mangrove forests constitute the remaining 2%.⁸⁵

Some key underlying factors contributing to the loss of forest areas in Thailand are population growth, high economic value of timber, insecure land ownership and land rights, etc. At the sub-national level, 36 provinces out of 77 have less than 20% of total area under forest cover, 23 provinces have forest cover of 20-40%, 7 have 40-60%, and seven provinces have over 60% of forest cover. These latter seven provinces are Chiangmai, Nan, Phrae, Lampang, Mae Hong Son, Tak and Kanchanaburi, which are all located in the North and the West of the country.⁸⁶

content/uploads/sites/29/2023/01/Forest-Area-2565-Full compressed.pdf.

_

⁸² Forest Land Management Office, "Project to prepare the foundation of the forest in 2022," Ministry of Natural Resources and Environment (Royal Forest Department, n.d.), https://www.forest.go.th/land/wp-

⁸³ FAO, " Global Forest Resources Assessment-Thailand," 2020,

https://openknowledge.fao.org/server/api/core/bitstreams/8b3aa28e-5086-4548-b71a-fef4bc64d8c6/content

⁸⁴ Conservation Forests are managed by the Department of National Parks Wildlife and Conservation (DNP) and consist of National Parks, Wildlife Sanctuaries and other conserved forest classifications which historically were not subjected to active forest management practices; Forests outside conservation forests are managed by the Royal Forest Department (RFD) and consist of forest lands that have historically been subjected to active forest management activities, excluding mangrove forests, which are managed by the Department of Marine and Coastal Resources (DMCR).

⁸⁵UNFCCC, "Thailand Forest Reference Emission Level (FREL) and Forest Reference Level (FRL) Report," 2020, https://redd.unfccc.int/media/thailand frel frl report.pdf

⁸⁶ Ibid.

Forest area 2019

% of Province Area
85.51

O

Powered by Bing
C Goodbasser, Microsoft Tompton

Figure 4 Thailand's Forest Area (% of Province Area), 2019

Source: Royal Forest Department

7. Major climate and environment-related issues

Deforestation is a key problem in the forestry sector and indirectly affects agricultural productivity. According to the Global Forest Watch, between 2001 and 2022, Thailand lost 15.06 rai (2.41 Mha) of tree cover, equivalent to a 12% decrease in tree cover or and 1.43 Gt of CO₂e emissions⁸⁷. Since 1960s, total area of the country covered by forests decreased⁸⁸ from 53% to 36%. Historical deforestation has also exposed Thailand's soils to erosion and degradation and ultimately impacted negatively on biodiversity.⁸⁹

Key sectoral climate policies

As for the forestry sector, the CCMP Strategy 2 focuses on creating carbon sinks via forest conservation, restoration, reforestation, and afforestation. The Strategy states that measures that affect communities in forested areas should be evaluated on the merits of their

https://www.global for restwatch.org/dashboards/country/THA/?location=WyJjb3VudHJ5liwiVEhBll0%3D.

https://www.adb.org/sites/default/files/publication/722251/climate-risk-country-profile-thailand.pdf.

⁸⁷ Vizzuality, "Thailand Deforestation Rates & Statistics | GFW," n.d.,

^{88 &}quot;Thailand | Forest Carbon Partnership," n.d., https://www.forestcarbonpartnership.org/country/thailand.

⁸⁹ Asian Development Bank, "Climate Risk Country Profile: Thailand," 2021,

environmental and social impact via public hearings. Although the NDC target in 2030 excludes the LULUCF sector as part of its implementation, forest protection and conservation actions have been implemented continuously in Thailand.⁹⁰ The following actions were summarised in the LT-LEDS⁹¹:

- The National Forest Policy was adopted to ensure sustainable management of forests. To safeguard forests and enhance carbon sink, a target to increase green area cover to 55% (282,216 km2) of the total land area in 2037 has been adopted by the government, comprising 35% natural forest, 15% economic forest, and 5% urban and suburban green areas. Thailand aims to increase its green areas by 9% and plans to plant more trees in natural forests, economic forests, and urban areas.
- The involvement of local communities and private sectors is highlighted as a key strategy to protect Thai forests and enhance natural carbon sink. The Community Forest Act B.E. 2562 was adopted to empower local communities living in approximately 14,000 community forest areas to work with the government to manage and utilise natural resources in a sustainable way.
- To promote private sector participation in forest plantation, a voluntary carbon market for this sector known as Thailand Voluntary Emission Reduction Program for forestry and green space has been developed.

8. Forestry activities climate materiality assessment

Forestry and its associated activities are critical to the country's climate policy. Forests, peatlands, and wetlands store or absorb significant amounts of GHGs, which stabilise the ecosystem and provide climate regulation services. The proposed activities under this Taxonomy are related to the conservation of forests and associated ecosystems, which have the ultimate goal of maximising their ability to act as carbon sinks. These activities contribute not only to the main objective of climate change mitigation but also to the objective of protection and restoration of biodiversity and ecosystems.

_

⁹⁰ UNFCCC, "Thailand 2nd Updated NDC | UNFCCC," n.d., https://unfccc.int/documents/620602.

⁹¹ United Nations Framework Convention on Climate Change, "Thailand Long-Term Low Greenhouse Gas Emission Development Strategy (Revised Version)," November, 2022, https://unfccc.int/sites/default/files/resource/Thailand%20LT-LEDS%20%28Revised%20Version%29 08Nov2022.pdf

It is important to note that, according to the ISIC classification system, forestry is part of agriculture (and it will be treated as such in the Taxonomy), but in the IPCC 2006 classification system, forestry is part of the broader category that is called Land Use, Land-Use Change and Forestry (LULUCF). The table below shows the emissions of the most climate-material components of the LULUCF sector. The emissions of some activities in the LULUCF sector may be mitigated through practices currently included in the agriculture criteria of this Taxonomy.

Table 8 Land Use, Land-Use Change and Forestry sector emission profile

Subsector	IPCC 2006 Code	LULUCF sector GHG Emission and Sinks, total in GgCO2eq ⁹²	Corresponding proposed activities under the Thailand Taxonomy
Forest Land	4A	-29,328.06	Sustainable forest management
Remaining	4/1	27,320.00	Forestry plantation
Forest Land			Conservation, restoration, and
rorest Land			
			maintenance of natural forests
Cropland	4B	-91,486.96	Sustainable perennial or non-perennial
Remaining			crops, incl. corn, mango, pineapples,
Cropland			banana etc.
			Growing of sugarcane
			Cultivation of rice
			Cultivation of rubber trees
			Cultivation of palm oil trees
			Cultivation of cassava
Land Converted	4C	12,489.37	Sustainable forest management
to Cropland			Sustainable perennial or non-perennial
			crops, incl. corn, mango, pineapples,
			banana etc.
			Growing of sugarcane
			Cultivation of rice
			Cultivation of rubber trees
			Cultivation of palm oil trees
			Cultivation of cassava

Source: Thailand's First Biennial Transparency Report⁹³

⁹² Negative value means the activity works as a sink for GHG emissions. The share of emission for each activity can't be given due to combination of positive and negative numbers

⁹³ UNFCCC, "Thailand's First Biennial Transparency Report under the United Nations Framework Convention on Climate Change," December 26, 2024, https://unfccc.int/sites/default/files/resource/THAILAND%E2%80%99S%20BTR1.pdf

The main objective of the Taxonomy in the forestry sector is to promote sustainable forest management practices, including forestry plantations, conservation, restoration, and maintenance of the existing forests, and to encourage certification schemes such as the Forest Stewardship Council⁹⁴ (FSC), the Program for the Endorsement of Forest Certification⁹⁵ (PEFC) or Premium T-VER⁹⁶. Such certification schemes also prioritise aspects of biodiversity and highlight the imperative of supporting, conserving, and increasing biological diversity in forest ecosystems. The activities there are grouped as follows:

- Sustainable forest management. Forest management is the process of controlling the use or exploitation of forested land, including the extraction of timber and other forestry products. Sustainable forest management means the stewardship and use of forests and forest lands in such a way and at a rate that maintains their biodiversity, productivity, regeneration capacity, vitality and potential to fulfil, now and in the future, relevant ecological, economic and social, functions, at local, national, and global levels, and that does not cause damage to other ecosystems;
- Forestry plantation. A tree plantation, plantation forest, timber plantation or tree farm is a forest planted for high-volume production of wood, usually by planting one type of tree as a monoculture forest. Managed forests comprise trees that are planted (as opposed to naturally regenerated) which are of the same age and generally of the same species and are intended to maximise the production of timber and wood fibre;
- Conservation, restoration, and maintenance. Actions are needed to return existing natural forests to a healthy state and maintain them in this state. These include controlling invasive species, maintaining tree diversity, returning forest composition and structure to a more natural state, and pruning or removing underbrush that competes with trees.

As for the cropland-related sources of emission in **Table 4**, the activities that are proposed for addressing them in the taxonomy are covered by the agricultural section above, as well

95 "PEFC - Programme for the Endorsement of Forest Certification," n.d., https://www.pefc.org/.

⁹⁴ FSC, "Home | Forest Stewardship Council," February 16, 2024, https://fsc.org/en.

⁹⁶ Thailand Greenhouse Gas Management Organization, "Premium T-VER," https://ghgreduction.tgo.or.th/en/premium-t-ver.html

as the "Sustainable Forest Management" activity and associated labelling schemes that will cover such emissions.

8.1 Forestry criteria scope

The Taxonomy has the following scope of objects and activities related to forestry⁹⁷:

- Natural or pristine forests natural forests are forest areas with many of the principal characteristics and key elements of a native ecosystem, such as complexity, structure, and biological diversity, including soil characteristics, flora, and fauna, in which all or almost all the trees are native species, not classified as plantations.
- Plantation forestry planted forest that is intensively managed.
- Sustainable forest management commercial management of natural forests in a sustainable manner for the production of timber.
- Forest conservation non-commercial forestry activities designed to maintain the
 existing forest habitat in both area and quality. Activities will range from minimal
 interventions to active management and could include protection from deforestation
 risk, voluntary and mandatory set aside and active conservation efforts.
- Forest restoration and rehabilitation non-commercial forestry activities designed to increase the area or improve the quality of existing forest habitat or to establish new forest stands. Activities will range from minimal interventions to active restoration including facilitating regeneration and restoration via natural or artificial means.

8.2 Forestry criteria methodological approach

Within the forestry sector, all activities were grouped into three large clusters, organised on the basis of their objectives, operations and application outcomes. The three groups of activities cover a wide range of practices within the forestry sector⁹⁸:

• Sustainable forest management. Forest management is the process of controlling the use or exploitation of forested land, including extraction of timber and other forestry products. Sustainable forest management means the stewardship and use of

⁹⁷ Definition of forest can be found here: FAO, "SECOND EXPERT MEETING ON HARMONIZING FOREST-RELATED DEFINITIONS FOR USE BY VARIOUS STAKEHOLDERS," n.d., https://www.fao.org/4/Y4171E/Y4171E10.htm.

⁹⁸ Monetary Authority of Singapore, "Singapore-Asia Taxonomy for Sustainable Finance," 2023, . https://www.mas.gov.sg/-/media/mas-media-library/development/sustainable-finance/singaporeasia-taxonomy-updated.pdf

forests and forest lands in such a way, and at a rate, that maintain their biodiversity, productivity, regeneration capacity, vitality and their potential to fulfil, now and in the future, relevant ecological, economic and social functions, at local, national, and global levels, and that does not cause damage to other ecosystems.

- Forestry plantation. A tree plantation, plantation forest, timber plantation or tree farm is a forest planted for high volume production of wood, usually by planting one type of tree as a monoculture forest. The type of managed forest in which the trees are planted (as opposed to naturally regenerated), of the same age and generally of the same species, and are intended to maximise the production of timber and wood fibre;
- Conservation, restoration, and maintenance. Actions needed to return existing natural forests to a healthy state and maintain them in this state. These include controlling invasive species, maintaining tree diversity, returning forest composition and structure to a more natural state, and pruning or removing underbrush that competes with trees.

The criteria have been designed to be applicable to granular green activities as well as to the wider level. For example, some of the criteria are suitable for green use of proceeds instruments, such as green bonds, where a bond is raised for a specific project or asset (e.g. nurseries), while others (e.g. the proxy certification standards) are applicable at the forestry project level and could be used as part of corporate disclosure to classify green revenues. Compliance with the green threshold may be achieved by obtaining a recognised sustainable forest management certification label. This label is intended to confirm that the activities of the site operator will not lead to deforestation and that forest resources are used to the fullest extent and in the minimum amount necessary without disturbing the structure of the forest biosphere.

Eligible labels are as follows:

- Thai Forest Certification Council (TFCC). TFCC is a national Thai label for sustainable forestry aimed at promoting sustainable practices and combating climate change by preserving forests. Products bearing TFCC labels support the conservation of Thailand's diverse ecosystems and safeguard habitats crucial for biodiversity;
- Forest Stewardship Council (FSC). The FSC label promotes sustainable forestry practices ensuring that forests are managed appropriately. This allows the production

of timber, non-timber products and ecosystem services to maintain the forest's biodiversity, productivity, and ecological processes. Beyond environmental and ecosystem benefits, FSC-certified forest management also offers social advantages, providing long-term benefits to both local communities and society at large. It creates a significant incentive for local people to sustain forest resources (as referenced in the FSC Principles and Criteria for Forest Stewardship (FSC-STD-01-001 V5-3 EN)) FSC-certified forests prioritise the protection of endangered species and habitats, contributing to the overall health of ecosystems. Sustainable forestry practices endorsed by FSC labels reduce deforestation rates, helping to maintain the integrity of global carbon sinks;

- Programme for the Endorsement of Forest Certification (PEFC). PEFC certification
 provides a mechanism to promote the sustainable management of forests and ensures
 that forest-based products reaching the marketplace have been sourced from
 sustainably managed forests.
- Premium T-VER. Premium T-VERs (Thailand Voluntary Emission Reductions) is a national labelling system for projects that reduce or remove greenhouse gas emissions. In the agriculture and forestry sectors these projects focus on sustainable land management, reforestation, afforestation, and improved agricultural practices that capture carbon or prevent emissions. Premium T-VERs undergo rigorous verification to ensure their environmental integrity and additionality, meaning they provide genuine emission reductions beyond business-as-usual activities.

If the certification is obtained, inputs indicated in green and amber categories are considered aligned with the Taxonomy.

Amber activities of the forestry sector of the Taxonomy are either not defined there is no need for them as there are no hard-to-abate activities that require gradual transition or for forestry plantations include certain activities that must be phased out by the Thailand Taxonomy sunset date (2040). These activities involve the use of chemical fertilisers, which is suboptimal compared to the use of organic or bio-fertilisers but may be an option if the latter are of limited availability.

Red activities are defined as either activities that directly threaten endangered or rare species, involve illegal harvesting, trigger deforestation, or are associated with the use of prohibited chemicals.

9. Forestry subsector criteria and thresholds

1. Sustainable forest management

Sector	Forestry		
Activity	Sustainable forest management		
ISIC Code	0200		
	Management of planted and natural forests that ensures that forests		
	supply goods and services to meet both present-day and future needs		
	and contribute to sustainable development.		
Objective	Climate change mitigation; Protection and restoration of biodiversity and		
	ecosystems		
Green	In order to be aligned with the green category of the Taxonomy, the		
	forest manager must first obtain a valid certification (e.g., TFCC, FSC,		
	PEFC, Premium T-VER) for an area where the management activity is		
	taking place.		
	If certification is obtained, the following activities or inputs are aligned		
	with the Taxonomy as green ⁹⁹ :		
	 Conservation, restoration, and maintenance of forest areas; 		
	 Expenditures required to obtain the relevant certification; 		
	 Creation and maintenance of nurseries¹⁰⁰ where seeds and 		
	seedlings are sourced from sustainably managed areas ¹⁰¹ ;		
	Adoption and maintenance of monitoring technology that		
	enables the tracking of the forest extracts and their		
	conservation status;		

⁹⁹ At least one input should be selected for the alignment with the taxonomy

¹⁰⁰ Nurseries are defined any facility designated to produce tree seedlings grown under favourable conditions until they are ready for planting

¹⁰¹ FAO, "Sustainable Forest Management," Food and Agriculture Organization of the United Nations, n.d., https://www.fao.org/sustainable-forests-management/en/.

	 Equipment and costs incurred by forest management activities – pre and post extraction, including primary processing that is either powered by renewable energy or appear amongst the most energy efficient in the country – as certified by local energy efficiency standards. The use of diverse native plants that are suitable for the area to promote biodiversity. Community rights must be respected when implementing any of those practices¹⁰². 	
Amber	N/A	
Red	Exploitation of timber and non-timber products from any species would	
	lead to or further its threatened conservation status is harmful to the	
	objectives of climate change mitigation and protection and restoration	
	of biodiversity and ecosystems.	
Criteria	Climate Bonds Forestry criteria; Singapore Asia Taxonomy Criteria	
reference		

2. Forestry plantation

Sector	Forestry	
Activity	Forestry plantation	
ISIC Code	0200	
Description	Plantation of forests and associated activities	
Objective	Climate change mitigation; Protection and restoration of biodiversity and	
	ecosystems	
	ecosystems	

¹⁰² In line with the Regulation of the Community Forest Policy Committee on Governance, Maintenance, Utilization of Timber, and Utilization of Community Forest Areas B.E. 2566 (2023); The Regulation of the Community Forest Policy Committee on the Utilization of Products and Services from Community Forests B.E. 2566 (2023) and Community Forestry Act B.E. 2562 (2019).

Green

In order to be aligned with the green category of the Taxonomy, the forest manager must first obtain a valid certification (TFCC, FSC, PEFC or Premium T-VER) for an area where the forestry plantation activity is taking place¹⁰³.

If certification is obtained, the following activities or inputs are aligned with the Taxonomy as green ¹⁰⁴:

- Expenditures required to obtain the relevant certification;
- Use of organic and bio fertilisers;
- Use of physical and biocontrol of pathogens, pests, and weeds;
- Conservation, restoration, and maintenance;
- Creation and maintenance of nurseries¹⁰⁵ where seeds and seedlings are sourced in sustainably managed areas¹⁰⁶;
- Adoption and maintenance of monitoring technology that enables the tracking of the forest extracts.
- Equipment and costs incurred by the above-mentioned activities (equipment must be powered by renewable energy or appear amongst the most energy efficient in the country – as certified by local energy efficiency standards);
- The use of nature-based solutions / integrated landscape management
- The use of diverse native plants that are suitable for the area to promote biodiversity

¹⁰³ Database for checking the suitable areas for planting forest in Thailand by The Royal Forest Department: https://sitematching.forest.go.th/

 $^{^{104}}$ At least one input should be selected for the alignment with the taxonomy

¹⁰⁵ Nurseries are defined any facility designated to produce tree seedlings grown under favourable conditions until they are ready for planting

¹⁰⁶ FAO, "Sustainable Forest Management," Food and Agriculture Organization of the United Nations, n.d., https://www.fao.org/sustainable-forests-management/en/.

	Community rights must be respected when implementing any of those practices ¹⁰⁷ .
Amber	In order to be aligned with the amber category of the Taxonomy, the forest manager must first obtain a valid certification (TFCC, FSC, PEFC or Premium T-VER) for an area where the management activity is taking place. The following activities or inputs are aligned with the Taxonomy as amber: • Nutrient management plan ¹⁰⁸ based solely on chemical fertilisers (available only until 2040) and all associated inputs; • The phytosanitary management plan is based solely on chemicals (available only until 2040) and all associated inputs.
Red	 Use of chemicals listed in the Stockholm Convention 1a or 1b in the WHO classification of pesticides by hazard or not in compliance with the Rotterdam Convention is harmful to the objectives of climate change mitigation and protection and restoration of biodiversity and ecosystems; Operations on land that has been converted from high carbon stock (HCS55) after Jan 1, 2010 is harmful to the objective of climate change mitigation.
Criteria reference	Climate Bonds Forestry criteria; Singapore Asia Taxonomy Criteria

¹⁰⁷ In line with the Regulation of the Community Forest Policy Committee on Governance, Maintenance, Utilization of Timber, and Utilization of Community Forest Areas B.E. 2566 (2023); The Regulation of the Community Forest Policy Committee on the Utilization of Products and Services from Community Forests B.E. 2566 (2023) and Community Forestry Act B.E. 2562 (2019).

¹⁰⁸ A Nutrient Management Plan identifies actions and priorities that optimise the amounts, timing, and forms of nutrients used for optimal plant yield and minimises the potential for environmental impact: Government of Newfoundland and Labrador, "Nutrient Management Planning - Fisheries, Forestry and Agriculture," Fisheries, Forestry and Agriculture, August 10, 2021, https://www.gov.nl.ca/ffa/faa/agrifoods/land/soils/fertility/.

3. Conservation, restoration, and maintenance of natural forests

Sector	Forestry	
Activity	Conservation, restoration, and maintenance of natural forests	
ISIC Code	0200	
Description	Actions needed to protect and assure that environmental services are	
	provided by natural or pristine forests	
Objective	Climate change mitigation; Protection and restoration of biodiversity and	
	ecosystems	
Green	In order to be aligned with the green category of the Taxonomy, the	
	forest manager must first obtain a valid certification (TFCC, FSC, PEFC or	
	Premium T-VER) for an area where the management activity is taking	
	place.	
	If certification is obtained, the following activities or inputs are aligned	
	with the Taxonomy as green ¹⁰⁹ :	
	 Expenditures required to obtain the relevant certification; 	
	 Land acquisition with the purpose of conservation, restoration, 	
	and maintenance of natural forests;	
	 Any activities associated with the implementation of the 	
	Community Forests Act ¹¹⁰ ;	
	Any activity aimed at the restoration, protection, or proliferation	
	of mangroves;	
	 Use of organic and biofertilisers for the purpose of restoration or 	
	replanting of natural forests;	
	 Use of physical and biocontrol of pathogens, pests, and weeds 	
	for the purpose of restoration or replanting of natural forests;	

 109 At least one input should be selected for the alignment with the taxonomy

¹¹⁰ Food and Agriculture Organization, "Land and Agricultural Reform Act B.E. 2518 (1975)," https://faolex.fao.org/docs/pdf/tha195322.pdf.

	Nurseries ¹¹¹ where seeds and seedlings are sourced in	
	sustainably managed areas ¹¹² ;	
	 Adoption and maintenance of monitoring technology that 	
	enables the tracking of natural forest extracts and their	
	conservation status;	
	Equipment and costs incurred by the above-mentioned activities	
	(equipment must be powered by renewable energy or appear	
	amongst the most energy efficient in the country – as certified by	
	local energy efficiency standards);	
	● The use of nature-based solutions / integrated landscape	
	management	
	The use of diverse native plants that are suitable for the area to	
	promote biodiversity	
	Community rights must be respected when implementing any of those	
	practices ¹¹³ .	
Amber	N/A	
Red	N/A	
Criteria	Climate Bonds Forestry criteria; Singapore Asia Taxonomy Criteria	
reference		

_

¹¹¹ Nurseries are defined as any facility designated to produce tree seedlings grown under favourable conditions until they are ready for planting.

¹¹² Food and Agriculture Organization, "Land and Agricultural Reform Act B.E. 2518 (1975)," https://faolex.fao.org/docs/pdf/tha195322.pdf.

¹¹³ In line with the Regulation of the Community Forest Policy Committee on Governance, Maintenance, Utilization of Timber, and Utilization of Community Forest Areas B.E. 2566 (2023); The Regulation of the Community Forest Policy Committee on the Utilization of Products and Services from Community Forests B.E. 2566 (2023) and Community Forestry Act B.E. 2562 (2019).

Annex: Eligible agricultural practices

1. Sustainable perennial or non-perennial crops

Table 9 Eligible practices for Sustainable perennial or non-perennial crops, including corn, mango, pineapples, banana etc.

Title Description		Eligible Inputs
	Basic Practices	
Soil conservation	Carry out minimum soil preparation or tillage with permanent soil cover and use of green manures. On sloping soils, planting on contour lines through terracing, deep-rooting mulching, or other methods. Maintain soil biomass cover on at least 80% of the farm and prepare plots or soil according to soil conservation principles by reducing erosion or preventing soil degradation, preserving nutrient levels and soil properties. The goal is to maintain long-term soil fertility through practices such as cover cropping, crop rotation, contour planting, avoiding burning, and minimizing chemical use. Employ practices related to soil quality improvement and/or soil pH management, if applicable.	 Seeds, fertilisers, and light equipment for soil protection works Cover crops (seeds and seeding inputs) Living mulch Soil pH management The use of terracing techniques, either through rapid (radical) transformation or gradual (progressive) implementation, helps prevent soil erosion and enhances land use efficiency to boost productivity.
Irrigation	Employ efficient irrigation methods	Any inputs associated with implementing
management	such as drip or micro-sprinkler	this practice.
	irrigation to deliver water directly to	
	the root zone of perennial plants,	
	minimizing water wastage and	
	reducing the risk of foliar diseases.	
	Schedule irrigation based on crop	
	water requirements, soil moisture	

Title	Description	Eligible Inputs
Title Water management	levels, and weather conditions to optimise water use efficiency and prevent waterlogging or drought stress. Improve crop water productivity by comparing documented water yields per rai by crop type. OR Introduce water use efficiency in water systems in agricultural areas, irrigation (surface water and	Technologies for improvement of irrigation, storage, drainage systems, water remediation and treatment systems. Establishment of individual/community-based pumping system associated to small scale
	groundwater), and storage. Prevent water pollution with organic or chemical residues. Avoid excessive crop waterlogging with better drainage.	 irrigation system solar energy powered with water saving technology like drip irrigation. Installation of efficient water management systems (rainwater harvesting systems, water rationing, reclaimed water and water recycling) Applying techniques of radical or progressive terraces against erosion and improving the efficient use of land for increased productivity
Fertiliser management	Nutrient management (including N-P-K) is carried out efficiently according to the needs of each crop (fertiliser type, quantity, method, and timing) and in line with soil quality. Organic or bio-fertilisers, or soil amendments, may be used, with an appropriate balance between chemical and organic fertilisers. Practical considerations are also taken into account (sources, available nutrients, and related transportation). The goal is to use organic fertilisers in	 Fertilisers in measured doses; Fertigation (a technique that allows the simultaneous application of water and fertilisers through the irrigation system), Fertiliser application equipment and materials that allow timely and efficient dosage (hardware and software). Soil fertility assessment such as Soil testing kits (LDD TEST KITS), laboratory analysis services, precision fertiliser application equipment, and training

Title	Description	Eligible Inputs
	combination with chemical fertilisers,	programs on soil analysis and
	while still considering crop yield.	interpretation.
Pest and disease	Apply Integrated Pest Management ¹¹⁴	■ Inputs for biological and physical pest
control	(IPM) for pest and weed control. It is	and disease control, e.g., repellent
	a selection of various pest control	plant seeds, traps, or nets; laser-based
	methods that are used together	weed eliminators and blacklight traps;
	correctly at the right time,	Disease-resistant plant varieties and
	appropriate to the situation and area	seedlings
	conditions. Employ IPM techniques,	
	from planting to harvest, including	
	disease- and pest-resistant crop	
	varieties, planting at appropriate	
	densities, releasing natural enemies,	
	using traps, applying biological	
	control agents, and using chemical	
	pesticides correctly. This approach	
	reduces incidence of insect pest, soil-	
	borne and foliar diseases, and	
	judicious use of pesticides to manage	
	pests while minimizing environmental	
	impact and reducing risk to people.	
	Use bio-inputs, bio-pesticides, bio-	
	fertilisers, and conservation	
	biocontrol for organic production. In	
	order to avoid biodiversity loss, the	
	minimum number of chemical	
	pesticides (if required) shall be used.	
	Utilize automated laser weeding	
	machines to reduce the use of	
	chemical herbicides.	
Management and	Avoid open field burning of	Equipment for removal and collection
processing of	agricultural biomass or residues	of agricultural residues (e.g. straw
agricultural residues	after harvest during every	balers, combined harvesters) and

¹¹⁴ European Commission, "Integrated Pest Management (IPM)," EU - Food Safety, n.d., https://food.ec.europa.eu/plants/pesticides/sustainable-use-pesticides/integrated-pest-management-ipm_en

Title	Description	Eligible Inputs
	production cycle (in particular for	transport, processing (increasing
	rice, sugar cane and maise). Open	density) of residues, equipment for
	field causes air pollution, fine	paper and pulp production from rice
	particulate matter, greenhouse gas	straw.
	emissions, and destroys organic	The use of animal (cattle) feed needs
	matter and nutrients in the soil.	to be assessed for potential life cycle
	Incorporation into the soil if	CH4 emissions.
	residues are allowed to degrade	
	aerobically (min 30 days before	
	flooding), removal, transport,	
	storage, and processing of	
	residues. Potential use of residues	
	for composting and fertiliser	
	production, mushroom production	
	(rice straw), bioenergy and biogas	
	production, animal feed, paper	
	and pulp production. ¹¹⁵	
	Additionally, straw and stubble	
	can be fermented using	
	microorganisms to decompose the	
	rice straw or processed into	
	products like pelletized	
	biomass ¹¹⁶ , biochar, or charcoal.	
Compliance with	Implement actions required to obtain	Inputs required to transform the farm in
agricultural	sustainable agriculture certification	line with the requirements for the said
standards	from Table: List of eligible	certifications
	certification schemes. (Table 5)	
Crop rotation (in	Crop rotation is essential to prevent	Seeds, seedlings, equipment, and labour
transient or short-	the buildup of pests and diseases in	to enable crop rotation.
cycle crops)	the soil. Rotating crops helps break	

_

¹¹⁵ IRRI, "Rice Straw Management," International Rice Research Institute, May 31, 2019, https://www.irri.org/rice-straw-management.

¹¹⁶ Technology Catalog Contributing to Production Potential and Sustainability in the Asia-Monsoon Region https://www.jircas.go.jp/sites/default/files/TechCatalog_v3.0_en.pdf

Title	Description	Eligible Inputs
	pest cycles, improves soil structure,	
	and balances nutrient availability. In	
	short-cycle crops, rotations are	
	carried out according to a periodic	
	programme depending on the region.	
	Establish associated crops (including	
	nitrogen fixation crops) for moisture	
	management, fertility, and biological	
	activity. Rotation with green manure	
	to improve productivity can also be	
	carried out.	
	Intermediate Practic	es
Utilize Agrimap for	Agrimap is a tool that helps in	Access to Agrimap software, training on
zoning agricultural	dividing agricultural land into	using Agrimap, soil and climate data
land based on	different zones based on specific	collection tools, GPS equipment for
various factors such	criteria such as soil properties,	accurate mapping, and data analysis
as soil type, crop	topography, water availability, and	services.
suitability, and	historical yield data. This zoning	
climate conditions	allows for tailored management	
	practices in each zone, optimizing	
	input use and improving overall farm	
	productivity. By understanding the	
	unique characteristics of each zone,	
	farmers can apply precise amounts of	
	fertilisers, water, and other inputs,	
	reducing waste and environmental	
	impact.	
Land levelling	Land levelling is a technology used	Electric, hybrid or biofuel-based
	to level fields by removing soil from	equipment and machinery for laser land
	high points of the field and	levelling (scraper and laser guidance
	depositing it in low points of the	system), LLL services
	field. It improves crop establishment	
	and enables crops to mature	
	uniformly.	

Title	Description	Eligible Inputs
	It reduces greenhouse gas emissions by saving energy, reducing cultivation time, and improving input-use efficiency. In a level field, water is distributed evenly, thus reducing the amount of time and volume of water needed for irrigation. Fertiliser use is more efficient as nutrient runoff from high points to low points in the field is less. Prior to using alternate wetting and drying, LLL avoids too much drying of high points in the field, resulting in a yield penalty during the AWD process. 117	
Water harvest technologies (NBS)	Harvesting activities of rainwater to keep it for agriculture and livestock while fighting erosion. Improve solar energy use in irrigation to fight the effect of drought.	Knowledge, skills and equipment
Composting, organic and bio-fertilisers	 Utilise compost and organic fertilisers derived from plant residues, animal manure, or other organic sources. It enhances soil fertility and reduces dependence on chemical fertilisers. Utilise bio-fertilisers. This approach improves soil structure and microbial activity over time. If the use of inorganic fertilisers is unavoidable, it is crucial to apply them in prescribed doses, at the appropriate time, and precisely 	 Equipment for soil improvement with organic and bio-fertilisers. Compost production equipment

 $^{^{117}}$ International Rice Research Institute, "Laser land leveling", n.d., https://ghgmitigation.irri.org/mitigation-technologies/laser-land-leveling

Title	Description	Eligible Inputs
	where the plants need them, to	
	avoid excessive environmental	
	contamination.	
Integrated weed	Employ mulching, manual weeding,	Any inputs associated with implementing
management	and integrated weed management	this practice.
	techniques to control weed growth	
	without relying solely on herbicides,	
	which can have adverse effects on	
	soil health and beneficial organisms.	
	Weed control also help to reduce	
	number of host plants for pests and	
	plant diseases, or the accumulation	
	of pests in the field.	
Laser-based weed	Use of autonomous laser-based	Any inputs or technical assistance required
eliminators	weed eliminators to cut the use of	to implement the practice
	herbicides	
Implement precision agriculture technologies and practices	Precision agriculture involves using technology to monitor and manage field variability in crops. Techniques such as GPS-guided equipment, drones, sensors, and data analytics are used to optimize field-level management regarding crop farming. This approach enhances efficiency, productivity, and sustainability by ensuring that crops receive the precise number of inputs they need, such as water, fertilisers, and pesticides.	GPS and GNSS systems for field mapping and equipment guidance; auto-steering systems for tractors and harvesters; Variable Rate Technology (VRT) for site-specific application of seeds, fertilisers, and pesticides; remote sensing tools such as drones, satellites, and multispectral cameras for crop health monitoring and field analysis; yield monitoring systems installed on combines to generate yield maps during harvest; soil sensors and probes for real-time soil moisture and nutrient monitoring, precision sprayers with electronically controlled valves for targeted chemical application; smart irrigation systems including drip and
		automated sprinklers for optimized water management; data collection and analytics platforms (farm management

Title	Description	Eligible Inputs
		software) for decision support; artificial
		intelligence and machine learning tools for
		robotic operations and data-driven
		recommendations. Training for farmers on
		precision agriculture technologies.
Waste management	Appropriate collection, recycling,	Equipment, tools, inputs, and labour.
and treatment of	cleaning, and disposal of containers	
water contaminated	of pesticides and chemicals.	
with organic wastes	Use post-harvest residues in the	
	 plantation. Develop a contaminated	
	water treatment system to treat	
	waste and nutrients.	
Traceability and	Traceability is a mechanism to ensure	Certification costs, technical assistance,
certification	transparency in monitoring the	monitoring systems, and internet
	environmental, economic, health and	connection costs
	social consequences of agricultural	
	production. It also allows exporters	
	to quickly identify and withdraw any	
	product with sanitary or phytosanitary	
	problems or non-compliance with	
	protocols. Certification of products	
	can further enhance their safety,	
	value and marketing potential.	
	Advanced Practices	5
Biodigesters	Implement biodigesters for compost	Equipment, supplies, and labour, fixed
	and methane (biogas) production.	dome digester, including construction,
	The production of fertiliser and	improvement, and machinery for efficient
	biogas from animal manure and other	wastewater treatment, such as sludge
	organic waste involves supporting	dewatering machines
	collection areas for those in need of	
	large biogas digesters. This can be	
	achieved by gathering manure from	
	multiple farmers and small-scale	
	farms.	

Title	Description	Eligible Inputs
Improvement of	Use improved seeds ¹¹⁸ and newly	Inputs of these materials and technical
genetic material in	developed germplasm to increase	assistance, including disease-resistant plant
seeds and	yields and resilience to climate	varieties.
reproductive	variability (these already exist for rice,	
material.	maize, beans, and cassava). Use	
Biotechnology in	biotechnology for the production of	
agricultural	agricultural inputs derived from	
production chains	residual crop biomass (e.g.	
	biofertilisers and bio fungicides), as	
	well as for the development of	
	extracts and oils with pharmaceutical,	
	food, cosmetic, industrial, etc.	
	applications.	
Introduction of	Introducing polycultures or crops	Seeds, seedlings, material for nursery
polycultures or	associated with compatible species	development, and other inputs
intercropping of	(preferably native timber, banana, or	(equipment and labour).
permanent crops	fruit trees) protects the soil, increases	
	carbon and nitrogen fixation,	
	diversifies production, and increases	
	resilience to climate variability.	
Shift from transient	Shift land use towards systems with	Seeds, seedlings, material, including for
crops or pasture to	higher carbon sequestration (such as	nursery development, and other inputs
agroforestry systems	agroforestry systems), with better soil	(equipment and labour).
(e.g. fruit or forestry)	protection and congruence with its	
and agroforestry	vocation.	
systems (NBS)		
Payment for	Payment for Environmental Services	Technical assistance, costs of certification,
Environmental	(PES) is an advanced practice that	costs of MRV
Services (PES)	involves compensating landowners or	
	resource managers for maintaining or	
	enhancing ecosystem services, such	
	as water purification, carbon	
	sequestration, or biodiversity	

 $^{^{\}rm 118}$ Including new breeding technologies (GMO and others)

Title	Description	Eligible Inputs
	conservation. This mechanism creates	
	financial incentives for environmental	
	stewardship, aligning economic	
	interests with conservation goals and	
	promoting sustainable land	
	management. PES helps ensure the	
	long-term viability of natural	
	ecosystems by embedding ecosystem	
	service values into market structures	
	Complementary adopt	tions
Parametric Insurance	Parametric insurance or insurance	Insurance based on climatic indexes – for
for mitigating	based on climatic indexes are	e.g., estimated rainfall and temperature
climate risks	contracts that stipulate	based on satellite imagery.
	compensation based on the	
	occurrence of specified climatic	
	events (severe cyclones, heatwaves,	
	floods, landslides, mudslides among	
	others).	
Capacity building on	Strengthen training and capacity	Reinforcement of capacity building
sustainable	building of farmers on the nexus	programmes on sustainable agriculture
agriculture models	between the agriculture sector and	models; promotion of technological
	climate change, financial literacy, and	development agreements with the private
	sustainable agriculture models that	sector and human capital formation;
	build adaptive capacity to climate	training on green business.
	impacts.	
Nature-based water	Nature-based ¹¹⁹ water management	■ The activity is identified as a flood risk
management (NBS)	for water resources management	reduction or a drought risk reduction
	involve the planned use of	measure either in a water use and
	ecosystem services to improve water	protection management plan at the
	quantity and quality and increase	river basin scale.
	resilience to climate change.	The activity identifies and address the
		risks of environmental degradation

¹¹⁹ World Bank Group, "What You Need to Know About Nature-Based Solutions to Climate Change," World Bank, May 17, 2022, https://www.worldbank.org/en/news/feature/2022/05/19/what-you-need-to-know-about-nature-based-solutions-to-climate-change

Title	Description	Eligible Inputs
	Including measures to help prevent and protect against floods or droughts or phytoremediation.	related to the preservation of water quality and the prevention of water stress and deterioration of the status of affected water bodies to achieve good water status and ecological potential. The activity includes nature restoration or conservation actions that demonstrate specific ecosystem cobenefits, which contribute to achieving good water status. Local stakeholders are involved from the outset in the planning and design phase. The activity is based on the principles outlined by the IUCN Global Standard for nature-based solutions. Note 1: the activity takes into account National Biodiversity Strategies and Action Plans for the setting of nature conservation and restoration targets and for the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solution scheme in improving the status of the affected water body, achieving the conservation and restoration targets and in adapting to changing climate conditions.
Energy saving and clean energy	 Improve energy efficiency and use renewable sources, such as biogas and solar energy. Ensure adequate maintenance of equipment and improve energy efficiency. Replace traditional hydrocarbons-fuelled agricultural 	Installation of renewable energy systems. Equipment maintenance services to improve efficiency. Procurement of electric, hybrid or biofuel-based agricultural machinery.

Title	Description	Eligible Inputs
	machinery with biogas-fuelled or	
	electricity-fuelled	

2. Sustainable rice production

Table 10 Eligible practices for sustainable rice production

Title	Description	Eligible inputs
	Basic Practices	
Alternative wetting	AWD entails periodic draining of the field to a	Equipment, Inputs, Labour,
and drying	certain threshold, usually 15 cm below the	Monitoring equipment or services
	soil surface, and re-flooding. A perforated	for water levels, installation of
	tube placed in the soil enables the farmer to	improved water management
	monitor the water level below the soil	systems and tools, efficient
	surface to determine when to irrigate.	irrigation systems
	The AWD technology has also been proven	
	to effectively mitigate greenhouse gas	
	emissions, specifically methane, from rice	
	production by 30-70% without causing a	
	yield reduction. During the dry phases, the	
	methane-producing bacteria are inhibited,	
	thus setting a condition to reduce GHG	
	emission ¹²⁰ .	
Soil conservation	Reduce machinery passes and apply	Seeds, fertilisers, and light
	minimum tillage to the soil. Tillage with	equipment for soil work.
	adequate moisture and equipment. Manage	
	cultivated areas according to the land	
	conditions. For flat areas, ensure that paddy	
	fields are levelled evenly. In gently sloping	
	areas, plough along contour lines to prevent	
	soil erosion, and plough when the soil has	
	the right level of moisture. Practices like	
	leaving rice stubble after harvest can also be	
	implemented.	
Water resources	- Effective and efficient use of water	Membranes will cover the canal,
management	and irrigation in rice reduces wastage.	flow meters, irrigation
	- Rainwater harvesting.	

¹²⁰ IRRI, "Alternate Wetting and Drying," IRRI- GHG Mitigation in Rice, n.d., https://ghgmitigation.irri.org/mitigation-technologies/alternate-wetting-and-drying; Technology Catalog Contributing to Production Potential and Sustainability in the Asia-Monsoon Region https://www.jircas.go.jp/sites/default/files/TechCatalog_v3.0_en.pdf

Title	Description	Eligible inputs
	- Alternate Wetting and Drying	systemisation, control, and water
	(AWD) ¹²¹ irrigation	quality equipment.
		Storage tanks and ponds.
Pest and disease	Plants live fences with native species as	Plant material, seeds, native
control	biological barriers.	seedlings.
	Integrated pest and disease management.	Materials required in biological
	■ Biological control.	control.
Prolonged	Mid-season drainage involves the removal of	Drainage infrastructure, canals
midseason drainage	surface flood water from the rice crop for	and associated tools
	about seven days towards the end of	
	tillering. Mid-season drainage reduces	
	methane emissions of paddy fields, with	
	reductions ranging from 7 to 95%	
Crop diversification	Rotation crops to be planted before or	Inputs for rotation crops or
and rotation	after rice (including e.g. mung beans, corn,	inter cropping including seeds,
	potato, and others)	labour, harvesting and other
	Switch to perennial crops, e.g. in line with	services covering the full crop
	Thailand's 3R policy	cycle
		Inputs for switch to perennial
		crops to follow self sufficient
		economy philosophy, covering
		seedlings, labour,
		establishment costs, etc
		covering full crop cycle.
	Intermediate Practices	
Rice variety	Diversification of sow-certified rice seed	Certified and high-quality seeds
diversification	varieties including new authorized RD	and related inputs
(drought- and heat-	varieties with increased resilience towards	
tolerant strains and	climate impacts, shorter growing duration or	
short-duration	higher yield	
varieties)		

¹²¹ IRRI, "Alternate Wetting and Drying," IRRI- GHG Mitigation in Rice, n.d., https://ghgmitigation.irri.org/mitigation-technologies/alternate-wetting-and-drying

Title	Description	Eligible inputs
Laser land levelling	Laser land levelling (LLL) is a laser-guided	Electric, hybrid or biofuel-based
	technology used to level fields by removing	equipment and machinery for
	soil from high points of the field and	laser land levelling (scraper and
	depositing it in low points of the field. It	laser guidance system), LLL
	improves crop establishment and enables	services
	crops to mature uniformly.	
	It reduces greenhouse gas emissions by	
	saving energy, reducing cultivation time, and	
	improving input-use efficiency. In a level	
	field, water is distributed evenly, thus	
	reducing the amount of time and volume of	
	water needed for irrigation. Fertiliser use is	
	more efficient as nutrient runoff from high	
	points to low points in the field is less. Prior	
	to using alternate wetting and drying, LLL	
	avoids too much drying of high points in the	
	field, resulting in a yield penalty during the	
	AWD process ¹²² .	
Dry Direct-Seeded	In this technology, rice is directly seeded in	Electric, hybrid or biofuel-based
Rice (DSR)	the main plot with 2- or 4-wheel	machinery, equipment, and
	tractor/power tiller-drawn seed drills. DSR	services required to implement
	can be readily adopted by small farmers as	the practice as well as knowledge
	well as large farmers, provided that the	and skills.
	required machinery is locally available. The	
	technology has a lower water requirement	
	for crop establishment as puddling is not	
	required in this method. The soil in DSR	
	remains aerobic most of the time during the	
	season, which reduces methane emissions as	
	well as increases resilience to drought and	
	high yields.	

_

¹²² International Rice Research Institute, "Laser land levelling", n.d., https://ghgmitigation.irri.org/mitigation-technologies/laser-land-leveling

Title	Description	Eligible inputs
Composting, organic	Utilise compost and organic fertilisers	Equipment for soil improvement
and bio-fertilisers	derived from plant residues, animal	with organic and bio-fertiliser.
	manure, or other organic sources. It	Equipment for composting.
	enhances soil fertility and reduces	
	dependence on chemical fertilisers.	
	 Utilise bio-fertilisers. This approach 	
	improves soil structure and microbial	
	activity over time.	
	If non-organic fertilisers are unavoidable,	
	keep in mind that they should be applied in	
	measured doses when and where the crop	
	requires them, avoiding excessive	
	contamination of the environment.	
Machinery and	Adopt machines and methods of processing	Tools, labour, and electric, hybrid
accessories providing	residues that allow to completely eliminate	or biofuel-based
alternatives to	burning of agricultural residues.	machinery/accessories provide
burning waste		alternatives to burning waste,
		such as electric, hybrid or biofuel-
		based mechanised harvesters.
	Advanced Practices	
Biodigesters	Implement biodigesters for compost and	Equipment, supplies, and labour,
	methane (biogas) production. The production	fixed dome digester, including
	of fertiliser and biogas from animal manure	construction, improvement, and
	and other organic waste involves supporting	machinery for efficient
	collection areas for those in need of large	wastewater treatment, such as
	biogas digesters. This can be achieved by	sludge dewatering machines
	gathering manure from multiple farmers and	
	small-scale farms.	
Straw and stubble	Straw and stubble collection and removal	Harvesting and baling services
management (SSM)	for valorization purposes	for straw collection including
	 Incorporating straw and stubble into the 	equipment cost, labour,
	soil while allowing sufficient time for	transport and storage
	aerobic decomposition	Costs for incorporation
		services and equipment

Title	Description	Eligible inputs
Title	 Decomposition in the field using effective microorganisms (EM) for compost and methane (biogas) production For removal options, selling the straw and stubble to buyers or own use, including e.g. the following Composting of straw Mushroom production from straw Industrial uses of straw (e.g. pulping or conversion into biofuels) and biomass-to-energy uses 	 Costs for effective microorganisms (EM) inputs and related costs for application services, labour for decomposition of straw and stubble in-field Inputs for compost production from rice straw including equipment, services, labour, manure for mixing, biodigesters Inputs for value added products, such as biomass, packaging, and mushroom production and processing from rice straw, e.g. sheds and equipment pieces, labour, substrate and fungal strains and other inputs
Drones for agricultural use Precision agriculture	Employ unmanned aerial vehicle used in agriculture operations, mostly in yield optimization and in monitoring crop growth and crop production. Agricultural drones provide information on crop growth stages, crop health, and soil variations. Precision agriculture is a farming management	Drones, auxiliary equipment, training Any precision agriculture
equipment	strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to	equipment contributing to the objectives of the Taxonomy. (Please refer to Table 9 under Precision Agriculture Practices.)

Title	Description	ı	Eligible inputs	
	define a decision support system for whole farm management with the goal of optimizing			
	returns on inputs while prese	erving resources.		
Agro-met advisory	 Targeted advisory service 	and data in	Farm planning with Agro-met	
services	connection with farm and	d weather	information and smart farm	
	advisory		management systems, smart	
	GIS or drone-based analy	sis and	sensors	
	monitoring for agricultura	ι	 Data services and subscription 	
	recommendations		fees for climate-smart	
			agricultural advisory services	
Agrosilvopastoral	Implement integrated farming systems that		Seeds, seedlings, fertilisers,	
systems (NBS)	combine tree crops, annual crops, and		animals, and other supplies.	
	livestock production on the same area of			
	land. These systems aim to maximise the			
	productivity and sustainability of land use by			
	harnessing complementary interactions			
	between different components.			
Complementary Adoptions				
■ Rice harvesters		■ Efficient engir	nes	
Infrastructure and equipment to produce bio-		■ Efficient pum	oing systems	
inputs in general.		■ Modernisation	n of the cooling systems	
Establishment of forest plantations (NBS)			and clean technology	
■ Maintenance of forest plantations (NBS)				

3. Sustainable sugarcane production

Table 11 Eligible practices for sustainable sugarcane production

Title	Description	Eligible inputs	
Basic Practices			
Conservation tillage	Practice minimum tillage or no-till farming to improve soil structure, reduce erosion, and enhance organic matter content. Covering cropping during fallow periods helps protect the soil and improve its fertility. Minimising soil disturbance through techniques like no-till or reduced tillage helps to retain soil moisture, prevent erosion, and maintain soil structure, leading to improved soil health and reduced carbon emissions.	Seedlings, seeds, fertilisers, light equipment for soil work, planting materials such as stem cuttings	
Pest and disease control	 Plants live fences with native species as biological barriers. Integrated pest and disease management. Biological control. 	 Plant material, seeds, native seedlings. Materials required in biological control. Insect pest control 	
Water resources management	Enhance water use efficiency in sugarcane production management by comparing the effectiveness of water use per unit area. Introduce water use efficiency in irrigation. Prevent water contamination with organic or chemical residues. Avoid excessive crop waterlogging with better drainage. Manage wastewater using natural based solution like constructed wetland.	 Systemisation of irrigation, control, and water quality equipment. Storage tanks and ponds. Efficient water control systems tailored to the available water supply, including quality water management equipment. Natural water sources (canals, natural ponds) and constructed water sources (reservoirs, shallow wells, boreholes). 	

Title	Description	Eligible inputs
Crop rotation	Crop rotation is essential to prevent the	Seeds, seedlings, equipment,
	buildup of pests and diseases in the soil.	and labour for crop rotation.
	Rotating crops helps break pest cycles,	
	improves soil structure, and balances	
	nutrient availability. Implement rotations	
	according to a periodic program based on	
	the region; then, establish associated crops	
	for moisture management, fertility, and	
	biological activity.	
	Intermediate Practices	
Land levelling	Land leveling is a process used in	Any input associated with the
	agriculture to create a uniformly flat or	implementation of the practice.
	gently sloping surface. This technique	
	involves reshaping the natural contours of	
	the land to eliminate variations in	
	elevation, thereby ensuring that the surface	
	is even and suitable for specific purposes.	
	The levelled ground makes it easier to use	
	electric, hybrid or biofuel-based agricultural	
	machinery for harvesting sugarcane.	
Composting,	Utilise compost and organic fertilisers	● Equipment for soil
organic and bio-	derived from plant residues, animal	improvement with
fertilisers	manure, or other organic sources. It	organic and bio-
	enhances soil fertility and reduces	fertiliser.
	dependence on chemical fertilisers.	● Equipment for
	Utilise bio-fertilisers. This approach	composting.
	improves soil structure and microbial	Tools and additives for
	activity over time.	composting practices
	If non-organic fertilisers are unavoidable,	
	keep in mind that they should be applied	
	in measured doses when and where the	
	crop requires them, avoiding excessive	
	contamination of the environment.	
Replacement of	Adopt chop and mulch systems or	Tools, labour, and electric,
slash and burn with	mechanised sugarcane harvesting. Manage	hybrid or biofuel-based

Title	Description	Eligible inputs	
sustainable	sugarcane leaves and tops by selling them	machinery/accessories provide	
practices	to processing operators, chopping into the	alternatives to burning waste,	
	soil, or use them as mulch to avoid	such as mechanised harvesters.	
	burning.		
	Advanced Practices		
Biodigesters	Implement biodigesters for compost and	Equipment, supplies, and	
	methane (biogas) production.	labour, fixed dome digester,	
		including construction,	
		improvement, and machinery	
		for efficient wastewater	
		treatment, such as sludge	
		dewatering machines	
Genetic	Plant-certified varieties adapted to the	Certified and adapted plant	
improvement of	region.	material.	
seedlings and			
reproductive			
material			
Drones for	Employ unmanned aerial vehicle used in	Drones, auxiliary equipment,	
agricultural use	agriculture operations, mostly in yield	training	
	optimization and in monitoring crop growth		
	and crop production. Agricultural drones		
	provide information on crop growth stages,		
	crop health, and soil variations.		
Precision agriculture	Precision agriculture is a farming	Any precision agriculture	
equipment	management strategy based on observing,	equipment contributing to the	
	measuring and responding to temporal and	objectives of the Taxonomy.	
	spatial variability to improve agricultural	(Please refer to Table 9 under	
	production sustainability. It is used in both	Precision Agriculture Practices.)	
	crop and livestock production. Precision		
	agriculture often employs technologies to		
	automate agricultural operations, improving		
	their diagnosis, decision-making or		
	performing. The goal of precision		
	agriculture research is to define a decision		
	support system for whole farm		

Title	Description	n Eligible inputs		
	management with the goal of optimizing			
	returns on inputs while preserving			
	resources.			
Agrosilvopastoral	Implement integrated farm	ning systems that	Seeds, seedlings, fertilisers,	
systems (NBS)	combine tree crops, annua	al crops, and	animals, and other supplies.	
	livestock production on the same area of			
	land. These systems aim to maximise the			
	productivity and sustainability of land use			
	by harnessing complementary interactions			
	between different components.			
Complementary Adoptions		tary Adoptions		
■ Infrastructure and equipment to produce		■ Efficient engine	25	
bio-inputs in general.		Modernisation of the cooling systems		
■ Efficient pumping systems		Establishment of forest plantations (NBS)		
■ Energy saving and clean technology		■ Maintenance o	f forest plantations (NBS)	

4. Sustainable oil palm production

Table 12 Eligible practices for sustainable oil palm production

Title	Description	Eligible inputs	
	Basic Practices		
Soil	Reduce machinery use. Reduce any potential	Light equipment for soil works.	
conservation	disturbance to the soil.		
Intercropping,	Intercropping refers to the practice of growing	Seeds, fertilisers and other	
cover cropping	different crops together to optimize land use,	supplies, oil palm fronds, empty	
and mulching	improve soil health, and enhance overall farm	fruit bunches	
	productivity. Planting cover crops or using		
	mulch between palm oil rows helps to		
	suppress weeds, retain soil moisture, and		
	improve soil health. This reduces the need for		
	herbicides and synthetic fertilisers while		
	promoting natural nutrient cycling.		
Pest and disease	Integrated pest and disease management.	Materials required in biological	
control	Biological control.	control.	
Intermediate Practices			
Composting,	Utilise compost and organic fertilisers	■ Equipment for soil	
organic and bio-	derived from plant residues, animal	improvement with organic	
fertilisers	manure, or other organic sources. It	and bio-fertiliser.	
	enhances soil fertility and reduces	Equipment for composting.	
	dependence on chemical fertilisers.		
	Utilise bio-fertilisers. This approach		
	improves soil structure and microbial		
	activity over time.		
	If non-organic fertilisers are unavoidable, keep		
	in mind that they should be applied in		
	measured doses when and where the crop		
	requires them, avoiding excessive		
	contamination of the environment.		
Machinery and	Adopt machines and methods of processing	■ Tools, labour, and electric,	
accessories	residues that allow to completely eliminate	hybrid or biofuel-based	
providing	burning of agricultural residues.	machinery/accessories	

Title	Description	Eligible inputs
alternatives to	Option: Pyrolysis of agricultural residues to	provide alternatives to
burning	produce biochar, which enhances soil quality	burning waste, such as
agricultural	and contributes to carbon sequestration.	mechanised harvesters.
residues		■ Machinery or kilns designed
		for the pyrolysis of
		agricultural residues to
		produce biochar. Such
		machines and kilns must
		have integrated emission
		reduction measures.
Traceability and	Traceability is a mechanism to ensure	Certification costs, technical
certification	transparency in monitoring the environmental,	assistance, monitoring systems,
	economic, health and social consequences of	and internet connection costs
	agricultural production. It also allows	
	exporters to quickly identify and withdraw any	
	product with sanitary or phytosanitary	
	problems or non-compliance with protocols.	
	Certification of products can further enhance	
	their safety, value and marketing potential.	
	Advanced Practices	
Biodigesters	Implement biodigesters for compost and	Equipment, supplies, and labour,
	methane (biogas) production.	fixed dome digester, including
		construction, improvement, and
		machinery for efficient
		wastewater treatment, such as
		sludge dewatering machines
Biodiversity	Preserving and restoring natural habitats within	Seedlings, fertilisers, equipment,
conservation	and around oil palm plantations promotes	and other supplies.
	biodiversity conservation and ecosystem	
	resilience. This can include maintaining riparian	
	buffers, establishing wildlife corridors, and	
	planting native tree species.	
Plant genetic	Certified plant varieties that have been	Plant materials that are certified
improvement	developed and adapted to specific	and improved for suitability to
	environmental conditions.	the environment.

And propagation materials Drones for Employ unmanned aerial vehicle used in agricultural use agriculture operations, mostly in yield optimization and in monitoring crop growth and crop production. Agricultural drones provide information on crop growth stages, crop health, and soil variations. Precision Precision agriculture is a farming management strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that systems (NBS) Drones, auxiliary equipment, training Drones, auxiliary equipment, training Drones, auxiliary equipment, training Drones, auxiliary equipment, training Training Precision agriculture training Any precision agriculture equipment contributing to the objectives of the Taxonomy. (Please refer to Table 9 under Precision Agriculture Practices.)			
Drones for agricultural use Employ unmanned aerial vehicle used in agricultural use Drones, auxiliary equipment, training Training Drones, auxiliary equipment, training Training Drones, auxiliary equipment, training Training Drones, auxiliary equipment, training training in prowith Drones, auxiliary equipment, training in prowith Drones, auxiliary equipment, training Training Drones, auxiliary equipment, training in prowith Drones, auxiliary equipment, training Training Drones, auxiliary equipment, training prowith Drones, auxiliary equipment, training prowith Drones, auxiliary equipment, training prowith Drones, auxiliary equipment, Training Any precision agriculture equipment contributing to the objectives of the Taxonomy. (Please refer to Table 9 under Precision Agriculture Practices.) Precision Agriculture Practices.) Precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Drones, auxiliary equipment, training systems that			
agricultural use agriculture operations, mostly in yield optimization and in monitoring crop growth and crop production. Agricultural drones provide information on crop growth stages, crop health, and soil variations. Precision Precision agriculture is a farming management agriculture equipment responding to temporal and spatial variability to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that Seeds, seedlings, fertilisers,			
optimization and in monitoring crop growth and crop production. Agricultural drones provide information on crop growth stages, crop health, and soil variations. Precision Precision agriculture is a farming management strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Agrosilvopastora Any precision agriculture equipment contributing to the objectives of the Taxonomy. (Please refer to Table 9 under Precision Agriculture Practices.) Any precision agriculture equipment contributing to the objectives of the Taxonomy. (Please refer to Table 9 under Precision Agriculture Practices.) Seeds, seedlings, fertilisers,			
and crop production. Agricultural drones provide information on crop growth stages, crop health, and soil variations. Precision Precision agriculture is a farming management strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Any precision agriculture equipment contributing to the objectives of the Taxonomy. (Please refer to Table 9 under Precision Agriculture Practices.) Seeds, seedlings, fertilisers,			
provide information on crop growth stages, crop health, and soil variations. Precision Precision agriculture is a farming management strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Any precision agriculture equipment contributing to the objectives of the Taxonomy. (Please refer to Table 9 under Precision Agriculture Practices.) Precision Agriculture Practices.)			
crop health, and soil variations. Precision Precision agriculture is a farming management strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Agrosilvopastora Any precision agriculture equipment contributing to the objectives of the Taxonomy. (Please refer to Table 9 under Precision Agriculture Practices.) Any precision agriculture equipment contributing to the objectives of the Taxonomy. (Please refer to Table 9 under Precision Agriculture Practices.)			
Precision Precision agriculture is a farming management strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Any precision agriculture equipment contributing to the objectives of the Taxonomy. (Please refer to Table 9 under Precision Agriculture Practices.) Approximately agriculture research agriculture precision agriculture pre			
strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that Seeds, seedlings, fertilisers,			
responding to temporal and spatial variability to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that Objectives of the Taxonomy. (Please refer to Table 9 under Precision Agriculture Practices.) Seeds, seedlings, fertilisers,			
to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that (Please refer to Table 9 under Precision Agriculture Practices.)			
sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that Seeds, seedlings, fertilisers,			
livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that Seeds, seedlings, fertilisers,			
often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that Seeds, seedlings, fertilisers,			
agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that Seeds, seedlings, fertilisers,			
diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that Seeds, seedlings, fertilisers,			
goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that Seeds, seedlings, fertilisers,			
define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that Seeds, seedlings, fertilisers,			
farm management with the goal of optimizing returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that Seeds, seedlings, fertilisers,			
returns on inputs while preserving resources. Agrosilvopastora Implement integrated farming systems that Seeds, seedlings, fertilisers,			
Agrosilvopastora Implement integrated farming systems that Seeds, seedlings, fertilisers,			
systems (NBS) combine tree crops, annual crops, and animals, and other supplies.			
livestock production on the same area of			
land. These systems aim to maximise the			
productivity and sustainability of land use by			
harnessing complementary interactions			
between different components.			
Complementary Adoptions			
Nature-based The activity is identified as a flood risk reduction or a drought risk reduction			
measure either in a water use and protection management plan at a river basin			
management scale.			
NBS) The activity identifies and address the risks of environmental degradation			
related to the preservation of water quality and the prevention of water stress			

Title	Description	Eligible inputs	
	and deterioration of the status of affected wa	ter bodies to achieve good water	
	status and ecological potential.		
	■ The activity includes nature restoration or cor	nservation actions that	
	demonstrate specific ecosystem co-benefits, v	which contribute to achieving good	
	water status. Local stakeholders are involved from the outset in the planning		
	and design phase. The activity is based on the principles outlined by the IUCN		
	Global Standard for nature-based solutions.		
	Note 1: the activity takes into account National Biodiversity Strategies and Action		
	Plans for the setting of nature conservation and restoration targets and for the		
	description of the measures to achieve these targets.		
	Note 2: A monitoring programme is in place to ev	valuate the effectiveness of a	
	nature-based solution scheme in improving the s	tatus of the affected water body,	
	achieving the conservation and restoration target	s and in adapting to changing	
	climate conditions.		

- Infrastructure and equipment to produce bio-inputs in general
- Establishment of forest plantations (NBS)
- Maintenance of forest plantations (NBS)
- Efficient engines
- Efficient pumping systems
- Modernisation of the cooling systems
- Energy saving and clean technology

5. Sustainable rubber trees production

Table 13 Eligible practices for sustainable rubber trees production

Title	Description Eligible inputs	
	Basic Practices	
Soil conservation	Implement erosion control measures such	Light equipment for soil works.
(NBS)	as contour planting, terracing, or vegetative	
	barriers to prevent soil erosion and	
	maintain soil fertility. Conserving soil health	
	is critical for long-term rubber productivity.	
Responsible	When synthetic pesticides and fertilisers are	Precision equipment, storage
chemical use	necessary, use them judiciously and follow	facilities, disposal systems and
	best management practices to minimise	other supplies.
	environmental impact and human	
	exposure. Proper storage, handling, and	
	disposal of chemicals are essential to	
	prevent contamination of soil and water	
	resources.	
Pest and disease	Integrated pest and disease management.	Materials required in biological
control	Biological control.	control.
	Intermediate Practices	
Composting,	Utilising compost and organic fertilisers	Equipment for soil improvement
organic and bio-	derived from plant residues, animal	with organic and bio-fertiliser.
fertilisers	manure, or other organic sources	Equipment for composting.
	enhances soil fertility and reduces	
	dependence on chemical fertilisers.	
	Utilise bio-fertilisers. This approach	
	improves soil structure and microbial	
	activity over time.	
	If non-organic fertilisers are unavoidable,	
	keep in mind that they should be applied	
	in measured doses when and where the	
	crop requires them, avoiding excessive	
	contamination of the environment.	
Water resources	Efficient water management practices, such	Drip irrigation and drainage
management	as drip irrigation or rainwater harvesting,	systems.

Title	Description	Eligible inputs	
	help optimise water use and minimise	Storage tanks and ponds.	
	water wastage (loss). This is particularly		
	important in regions where water resources		
	are limited or prone to drought.		
Traceability and	Implement traceability systems and obtain	Verification and compliance	
certification	certification from reputable organisations	costs.	
	such as the Forest Stewardship Council		
	(FSC) or the Rainforest Alliance. Certification		
	ensures compliance with sustainability		
	standards and demonstrates a commitment		
	to responsible rubber production.		
Machinery and	Adopt machines and methods of processing	Tools, labour, and electric,	
accessories	residues that allow to completely eliminate	hybrid or biofuel-based	
providing	burning of agricultural residues.	machinery/accessories provide	
alternatives to		alternatives to burning waste,	
burning waste		such as mechanised harvesters.	
Advanced Practices			
Biodigesters	Implement biodigesters for compost and	Equipment, supplies, and	
	methane (biogas) production.	labour, fixed dome digester,	
		including construction,	
		improvement, and machinery	
		for efficient wastewater	
		treatment, such as sludge	
		dewatering machines	
Biodiversity	Preserving and restoring natural habitats	Seedlings, fertilisers, equipment,	
conservation	within and around rubber plantations to	and other supplies.	
	promote biodiversity and ecosystem		
	resilience. This can include maintaining		
	riparian buffers, establishing wildlife		
	corridors, and planting native tree species.		
Genetic	Plant certified seedlings varieties adapted	Certified and adapted plant	
improvement of	to the region.	material.	
reproductive			
material			

Title	Descrip	tion	Eligible inputs
Drones for	Employ unmanned aeria	al vehicle used in	Drones, auxiliary equipment,
agricultural use	agriculture operations, n	nostly in yield	training
	optimization and in mor	nitoring crop growth	
	and crop production. Ag	ricultural drones	
	provide information on	crop growth stages,	
	crop health, and soil vai	iations.	
Precision agriculture	Precision agriculture is a	farming	Any precision agriculture
equipment	management strategy ba	ased on observing,	equipment contributing to the
	measuring and respondi	ng to temporal and	objectives of the Taxonomy.
	spatial variability to imp	rove agricultural	(Please refer to Table 9 under
	production sustainability	v. It is used in both	Precision Agriculture Practices.)
	crop and livestock produ	uction. Precision	
	agriculture often employ	oys technologies to	
	automate agricultural op	perations, improving	
	their diagnosis, decision-	making or	
	performing. The goal of	precision	
	agriculture research is to	define a decision	
	support system for who	le farm	
	management with the g	oal of optimizing	
	returns on inputs while	oreserving	
	resources.		
Agrosilvopastoral	Integrate rubber cultivation with other		Seeds, seedlings, fertilisers,
systems (NBS)	crops, trees, and livestock to enhance		animals, and other supplies.
	biodiversity, soil health, and ecosystem		
	resilience. Agroforestry systems can provide		
	additional income sources for farmers while		
	reducing the risk of soil erosion and		
nutrient depletion.			
Complementary Adoptions			
Nature-based water n	Nature-based water management (NBS) • The activity is identified as a flood risk reduction of		
		a drought risk reduction measure either in a water	
		use and protectio	n management plan at a river
		basin scale.	
		■ The activity identifies and address the risks of	
environmental degradation related to the			gradation related to the

water stress and deterioration of the status of affected water bodies to achieve good water s and ecological potential. The activity includes nature restoration or conservation actions that demonstrate specific ecosystem co-benefits, which contribute to achieving good water status. Local stakeholder involved from the outset in the planning and	Title	Description	Eligible inputs
affected water bodies to achieve good water s and ecological potential. The activity includes nature restoration or conservation actions that demonstrate specific ecosystem co-benefits, which contribute to achieving good water status. Local stakeholder involved from the outset in the planning and design phase. The activity is based on the print outlined by the IUCN Global Standard for nature based solutions. Note 1: the activity takes into account National Biodiversity Strategies and Action Plans for the set of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based soluting scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate conditional targets and in adapting to changing climate conditional infrastructure and equipment to produce bio-inputs in general. Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems		pre	eservation of water quality and the prevention of
and ecological potential. The activity includes nature restoration or conservation actions that demonstrate specific ecosystem co-benefits, which contribute to achieving good water status. Local stakeholder involved from the outset in the planning and design phase. The activity is based on the print outlined by the IUCN Global Standard for nature based solutions. Note 1: the activity takes into account National Biodiversity Strategies and Action Plans for the set of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected we body, achieving the conservation and restoration targets and in adapting to changing climate condit terms and in adapting to changing climate condit terms and in adapting to changing stimate conditions.		wa	ter stress and deterioration of the status of
 The activity includes nature restoration or conservation actions that demonstrate specific ecosystem co-benefits, which contribute to achieving good water status. Local stakeholder involved from the outset in the planning and design phase. The activity is based on the princoutlined by the IUCN Global Standard for nature based solutions. Note 1: the activity takes into account National Biodiversity Strategies and Action Plans for the set of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solut scheme in improving the status of the affected we body, achieving the conservation and restoration targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems 		affe	ected water bodies to achieve good water status
conservation actions that demonstrate specific ecosystem co-benefits, which contribute to achieving good water status. Local stakeholder involved from the outset in the planning and design phase. The activity is based on the princoutlined by the IUCN Global Standard for nature based solutions. Note 1: the activity takes into account National Biodiversity Strategies and Action Plans for the set of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate conditional targets and in adapting to changing climate conditional targets and in adapting to changing systems Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems		and	d ecological potential.
ecosystem co-benefits, which contribute to achieving good water status. Local stakeholder involved from the outset in the planning and design phase. The activity is based on the print outlined by the IUCN Global Standard for nature based solutions. Note 1: the activity takes into account National Biodiversity Strategies and Action Plans for the set of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate conditions targets and in adapting to changing climate conditions. Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems		■ The	e activity includes nature restoration or
achieving good water status. Local stakeholder involved from the outset in the planning and design phase. The activity is based on the princ outlined by the IUCN Global Standard for naturbased solutions. Note 1: the activity takes into account National Biodiversity Strategies and Action Plans for the set of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate conditional targets and in adapting to changing climate conditional efficient engines Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems		COI	nservation actions that demonstrate specific
involved from the outset in the planning and design phase. The activity is based on the print outlined by the IUCN Global Standard for nature based solutions. Note 1: the activity takes into account National Biodiversity Strategies and Action Plans for the set of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected we body, achieving the conservation and restoration targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. Efficient pumping systems Modernisation of the cooling systems		eco	osystem co-benefits, which contribute to
design phase. The activity is based on the prince outlined by the IUCN Global Standard for nature based solutions. Note 1: the activity takes into account National Biodiversity Strategies and Action Plans for the set of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate condit suggests and in adapting to changing climate condit Efficient engines Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems		ach	nieving good water status. Local stakeholders are
outlined by the IUCN Global Standard for nature based solutions. Note 1: the activity takes into account National Biodiversity Strategies and Action Plans for the set of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate conditional targets and in adapting to changing climate conditional efficient pumping systems Infrastructure and equipment to produce bio-inputs in general. Efficient pumping systems Modernisation of the cooling systems		inv	olved from the outset in the planning and
based solutions. Note 1: the activity takes into account National Biodiversity Strategies and Action Plans for the set of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected wa body, achieving the conservation and restoration targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems		de	sign phase. The activity is based on the principles
Note 1: the activity takes into account National Biodiversity Strategies and Action Plans for the set of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected wa body, achieving the conservation and restoration targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems		ou ⁻	tlined by the IUCN Global Standard for nature-
Biodiversity Strategies and Action Plans for the set of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems		bas	sed solutions.
of nature conservation and restoration targets and the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems		Note 2	<u>l</u> : the activity takes into account National
the description of the measures to achieve these targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations the description of the measures to achieve these targets. Place 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate conditions. Efficient engines Modernisation of the cooling systems		Biodiv	ersity Strategies and Action Plans for the setting
targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Targets. Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate condit		of nat	ure conservation and restoration targets and for
Note 2: A monitoring programme is in place to evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. I Efficient engines Efficient pumping systems Modernisation of the cooling systems		the de	escription of the measures to achieve these
evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations evaluate the effectiveness of a nature-based solur scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate condit Efficient engines Efficient pumping systems Modernisation of the cooling systems		targets	5.
scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations scheme in improving the status of the affected was body, achieving the conservation and restoration targets and in adapting to changing climate condit Efficient engines Efficient pumping systems Modernisation of the cooling systems		Note 2	2: A monitoring programme is in place to
body, achieving the conservation and restoration targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems		evalua	ate the effectiveness of a nature-based solution
targets and in adapting to changing climate condit Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations targets and in adapting to changing climate condit Efficient engines Efficient pumping systems Modernisation of the cooling systems		schem	ne in improving the status of the affected water
 Infrastructure and equipment to produce bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems 		body,	achieving the conservation and restoration
bio-inputs in general. Establishment of forest plantations Modernisation of the cooling systems		targets	s and in adapting to changing climate conditions.
 Establishment of forest plantations Modernisation of the cooling systems 	Infrastructure and equipmen	t to produce	icient engines
• Modernisation of the cooking systems	bio-inputs in general.	■ Effi	icient pumping systems
	Establishment of forest plan	tations = Mc	odernisation of the cooling systems
	Maintenance of forest planta		
	·		2.3, 223 and elean teamology

6. Sustainable cassava production

Table 14 Sustainable practices for cassava production

Practice	Description	Eligible inputs
	Basic Practices	
Soil conservation and	Implementing contour planting helps reduce soil erosion	Contour mapping
contour planting	and water runoff in sloped areas, improving soil moisture	tools, basic training for
	retention. This practice involves planting cassava along	farmers, and stakes for
	natural land contours, slowing down water movement	marking planting rows.
	and preventing nutrient loss. It is a cost-effective	
	approach to maintaining soil structure and long-term	
	productivity.	
Organic mulching	Applying organic mulch, such as crop residues or leaves,	Crop residues, dried
	around cassava plants helps retain soil moisture, suppress	leaves, coconut husks,
	weeds, and enhance soil organic matter. Mulching	or straw.
	reduces temperature fluctuations, minimizing stress on	
	plants and improving root development.	
Timely and balanced	Using appropriate amounts of organic and inorganic	Compost, farmyard
fertilization	fertilisers at key growth stages ensures optimal cassava	manure, NPK fertilisers,
	development while preventing nutrient imbalances and	and soil testing kits.
	soil degradation. Proper fertilization enhances root yield	
	and improves soil fertility over time.	
	Intermediate Practice	
Intercropping with	Growing cassava alongside nitrogen-fixing legumes (such	Legume seeds,
legumes	as peanuts or cowpeas) improves soil fertility and reduces	knowledge of
	the need for synthetic fertilisers. This practice also	compatible planting
	enhances biodiversity and reduces the risk of pests and	arrangements, and
	diseases by disrupting monoculture cycles.	basic irrigation
		management.
Improved pruning	Improved pruning techniques in cassava can enhance root	High-quality pruning
techniques	quality and potentially increase tuber size and starch	tools, such as pruning
	content by directing the plant's energy toward root	saws and loppers.
	development. Pruning also facilitates better air circulation	Demonstration plots to
	and light penetration, reducing disease risk and supporting	teach pruning
	healthier plant growth. Additionally, timely pruning can	techniques.

Practice	Description	Eligible inputs
	make harvesting easier and extend the shelf-life of	Access to professional
	cassava roots by minimizing postharvest deterioration.	pruning services for
		initial farm setup.
Cover cropping	Growing cover crops, such as legumes or grasses, during	Cover crop seeds (e.g.,
	the off-season helps prevent soil erosion, suppress	cowpea), land
	weeds, and enhance soil organic matter. This practice	preparation tools, and
	also improves soil moisture retention and reduces the risk	knowledge of rotation
	of pests and diseases by creating a more resilient soil	schedules.
	ecosystem.	
	Advanced Practice	
Precision agriculture	Using remote sensing, drones, and soil sensors allows	Drones, GIS software,
and digital	farmers to monitor crop health, detect nutrient	soil sensors, and
monitoring	deficiencies, and apply inputs precisely where needed.	farmer training
	This approach optimizes yields while minimizing resource	programs.
	waste and environmental impact.	
Bioinput-based pest	Implementing integrated pest and diseases management	Biopesticides,
and disease	(IPM and IDM) using biopesticides, beneficial insects, and	beneficial insect
management	microbial inoculants reduces reliance on chemical	breeding stations,
	pesticides. This practice enhances soil health and	microbial inoculants,
	prevents pest resistance while supporting biodiversity in	and training for farmers
	cassava fields.	on IPM techniques.
Agroforestry systems	Integrating cassava cultivation with trees and shrubs	Agroforestry species,
	enhances biodiversity, improves soil health, and provides	tree seedlings,
	additional income sources through diversified products.	knowledge of planting
	Agroforestry systems also help mitigate climate risks by	arrangements, and
	increasing carbon sequestration and improving	pruning tools.
	microclimate conditions.	
	Complementary Adoptions	

Practice	Description		Eligible inputs	
■ Establishment	and strengthening of	•	Efficient engines	
organizations fo	or implementing basic	•	Efficient pumping systems	
sustainable practice.		•	Modernization of cooling systems	
■ Energy savings a	nd clean energy	•	Live fences	
■ Electric, hybri	d or biofuel-based	•	Conservation tillage	
machinery ar	nd accessories for	•	Silvopastoral systems	
minimum and conservation tillage				
■ Biodigester machinery and equipment				

7. Sustainable livestock production

Table 15 Eligible practices for Sustainable livestock production

Title	Description	Eligible Inputs
	Basic Practices	
Compliance with	Implement actions required to obtain	Inputs required to transform the
agricultural standards	sustainable agriculture certification	farm in line with the requirements
	from Table 5 .	for the said certifications
Efficient	Collect, store, and conserve water to	Drinking troughs, hoses, floats,
management and	provide livestock with a clean and	buoys, pumps, storage tanks and
protection of water	reliable source during seasonal and	piping; construction of water
sources	climatic variations. Harvest water and	ponds, reservoirs, water storage
	build livestock aqueducts.	tanks, or other systems that
		promote efficient water use,
		enabling production to continue
		during water shortages.
Water management	Protect natural water sources from	Inputs required to implement the
	direct access by livestock, e.g. by	practice
	isolating riparian forest areas, planting	
	native species for stream restoration,	
	preventing diversion of rivers and	
	streams, and preserving springs and	
	wetlands.	
	Intermediate Practices	
Animal welfare	Following the above practices provides	Technical assistance on animal
(excluding health	a favourable environment for livestock,	welfare, vaccination, and related
aspects)	through sufficient and varied diet,	inputs.
	shade, accessible watering places,	
	natural windbreaks, vaccination for	
	livestock and space for herd social	
	activities.	
Organic and green	Seize good management of manure,	Equipment, material, tools, and
manures, manure,	urine, and other organic residues	inputs (e.g. composting, seedlings,
and effluent	(especially on specialised dairy farms)	seeds, labour, vermicomposting).
utilisation	under a manure management plan.	

Title	Description	Eligible Inputs
	Use cover crops and crops (sorghum,	
	maise, potato) as green manure.	
	Instant dung loads on grassland,	
	together with fodder trees and shrubs,	
	promote soil biodiversity (e.g. dung	
	beetles, earthworms, etc.);	
	incorporating faeces and urine fertilises	
	and decompacts the soil. Decrease	
	nitrous oxide and methane emissions	
	from manure. Reduce accumulation in	
	animal manure pits, focusing on	
	minimizing contamination at the initial	
	stage before it enters the treatment	
	system.	
Pasture and fodder	Improve the quality and quantity of	Purchase and sowing of seeds of
management	pastures and forages with nutritional	improved or natural varieties of
	and metabolic benefits for livestock	grasses and native creeping
	(FAO principles / tailored to the type of	legumes, selected according to
	livestock being raised). Stable native	soil and climatic conditions in the
	pastures allow natural regeneration	region. Network of nurseries
	through rotational grazing. Where	(including on-site nurseries) of
	conditions are more degraded, new	native or focal tree material for
	grasses and varieties of grasses and	protection.
	legumes should be introduced to	Soil suitability with composted
	increase forage supply. Incorporate	material
	shrubs and trees that provide	Irrigation systems, if applicable.
	browseable (edible) fruits and leaves	
	for livestock, accelerating soil recovery	
	and favouring the wildlife population.	
	If pasture cover is less than 80% of the	
	land and there is minimal tree and	
	shrub cover, the soil is considered	
	degraded. With pasture and forage	
	management, an increase in average	
	annual yield of at least 30% per rai is	
	expected within three years compared	

Title	Description	Eligible Inputs
	to the baseline scenario, using the	
	supply calculation based on gauging	
	(i.e. in kg dry biomass per m2 per year).	
D.L. and A.W.		
Balanced nutrition	Providing a well-balanced diet with	Locally sourced grains, mineral
and local feed	locally available feed ingredients	supplements, feed formulation
sources	optimizes growth rates and feed	guidelines, and feed mixers.
	conversion efficiency while reducing	
	dependency on imported feed. Using	
	alternative protein sources such as	
	cassava meal or insect-based feeds can	
	lower costs and environmental	
	impacts.	
	Advanced Practices	
Biodigesters, aquatic	Integrated management of manure and	Biodigesters, fixed dome digester,
plant and	urine from livestock barns and	supplies and installation.
aquaculture	enclosures with biodigesters,	Construction, upgrade, and
channels, oxidation	composting, and other technologies,	procurement of machinery to
ponds, composting	thus avoiding pollution, effectively	enhance wastewater treatment
and vegetative	managing waste and minimising	efficiency, such as sludge
systems	methane emissions. Produce gas,	dewatering presses.
	fertilisers, and compost from manure	
	and other organic waste.	
Capacity building on	Strengthen training and capacity	Reinforcement of capacity-building
sustainable livestock	building of farmers on sustainable	programmes on sustainable
models	livestock models, including through	livestock models; promotion of
	farmers' field schools	technological development
		agreements with
		private sector and human capital
		formation
Crop residues	Crop residue utilisation in livestock	Crop residue utilisation in livestock
utilisation	feeding is an important climate-smart	feeding
	agricultural practice, especially for	
	<u> </u>	

Title	Description	Eligible Inputs
	farmers doing integrated crop	
	production and livestock.	
Fodder hedges	Plant shrub species at high densities in linear rows, which act as fodder for livestock while retaining soil and soil moisture. They are often combined with live fences in the division of paddocks.	 Planting of hedges of proven species (e.g. Sesbania, Leucaena, Erythrina, Pterocarpus, and Gliricidia, among others). Drought-tolerant fodder crops Fodder conservation by: Silage technology Hay technique Hydroponic fodder systems
Improved breeds	Genomic-based improvement of cattle	Genomic improvement programs:
	and other livestock in response to	genetically improved cattle or
	climate change can contribute to the	other livestock whose
	increase of productivity, resiliency, and	improvement is aimed at limiting
	reduction of GHG.	climate footprint
Intensive	Encourage a more integrated	Purchase and planting of species
silvopastoral systems	agroforestry arrangement, combining	proven in various regions and
(SSPI)	the practices mentioned above, such	conditions (e.g. Leucaena),
	as forage hedges and trees in high	adaptation of paddocks, watering
	densities under fixed rotation patterns.	troughs and related inputs.
	Fodder banks, mixed fodder banks, and fodder hedgerows are types of arrangements that allow for a greater variety of species, high protein benefits, nutrient recycling, soil moisture retention, and biodiversity.	
Live fences	Establish lines of trees or shrubs to	Seeds, seedlings, planting, pruning
	delimit a property in place of poles;	equipment, and inputs for tree
	this provides by-products such as	care.
	fodder, firewood, timber, flowers for	
	honey, fruit, etc. Based on experience,	

Title	Description	Eligible Inputs
	the recommended distance between	
	trees is 3 metres or more in the case of	
	wide canopy species.	
Mixed fodder banks	Designate an area of the farm where	Planting of fodder, materials,
	forage material is sown to feed	equipment, and labour for storage,
	livestock throughout the year, which	including inputs for silage and
	can be "saved" and conserved for use	other forms of fodder
	during critical periods (such as storms	conservation.
	and droughts) that affect pasture	
	production on the farm.	
	In this area, intensive crops are	
	established in which herbaceous,	
	arboreal, and shrub species of high	
	nutritional value are associated with	
	obtaining high-quality fodder that is rich	
	in proteins, minerals, sugars, fibre, and	
	vitamins for animal feed.	
Reducing	Incorporating a reasonable share of	Carbohydrates, amino acid-
methanogens and	carbohydrates and/or amino acid-	containing feed, dietary
improving animal	containing feed in a cattle diet,	supplements, immunisation
diet	increasing feed intake, processing	materials; precision nutrition diet
	forages, and offering a diet that	
	includes unsaturated fat may	
	contribute to reducing methanogens or	
	other microbes involved in	
	methanogenesis. The same is achieved	
	through immunisation against	
	methanogens, use of special feed	
	additives (such as cattle methane	
	suppression feed containing cashew	
	nut shell liquid (CNSL) and general	
	changes in a cow's diet. Enhance food	
	quality for easier digestion.	

Title	Description	Eligible Inputs
Scattered paddock	Strengthen the presence of trees by	Network of nurseries and
trees	natural regeneration or direct planting	dissemination of native species at
	that provides shade and feed for	the territorial level.
	livestock. Ensure the maintenance and	Awareness-raising is needed in the
	development of the trees. This practice	management of material
	protects pastures and crops from the	identification, planting, and
	wind, increases decompaction and	pruning for the formation of plant
	nutrient recycling, strengthens organic	material.
	matter, biogenesis, and runoff and	
	prevents wind erosion. Based on	
	successful projects, minimum densities	
	of 30 trees per 6.25 rai in the low and	
	middle tropics and up to 25 trees per	
	6.25 rai in the high tropics, with a	
	minimum height of 2 metres, are	
	recommended.	
Improved housing	Ensuring proper housing with adequate	Fans, ventilation systems, shading
and ventilation	space, ventilation, and temperature	materials, and appropriate stocking
	control reduces stress, improves animal	density guidelines. Introduction of
	welfare, and prevents respiratory	evaporative house (EVAP) farm
	diseases. Well-ventilated housing also	system
	reduces ammonia buildup, lowering	
	the risk of infections and improving	
	overall productivity.	
	Complementary adoptions	
Clean energies (solar,	Harness renewable energy sources,	Gas-fired generators are derived
wind, gravity) and	such as photovoltaic cells and biogas	from biodigesters, as well as
energy efficiency	from biodigesters. Optimise the use of	photovoltaic and wind power
	energy and fuels in equipment and	systems.
	machinery with good maintenance and	
	usage control.	
Nature-based water	Nature-based solutions (NBS) for water	The activity is identified as a
management	resources management involve the	flood risk reduction or a
	planned use of ecosystem services to	drought risk reduction measure
	improve water quantity and quality and	either in a water use and
	increase resilience to climate change.	

Title	Description	Eligible Inputs
		protection management plan at
	Including measures to help prevent	a river basin scale.
	and protect against floods or droughts.	The activity identifies and
		address the risks of
		environmental degradation
		related to the preservation of
		water quality and the
		prevention of water stress and
		deterioration of the status of
		affected water bodies to
		achieve good water status and
		ecological potential.
		■ The activity includes nature
		restoration or conservation
		actions that demonstrate
		specific ecosystem co-benefits,
		which contribute to achieving
		good water status. Local
		stakeholders are involved from
		the outset in the planning and
		design phase. The activity is
		based on the principles
		outlined by the IUCN Global
		Standard for nature-based
		solutions.
		Note 1: the activity takes into
		account National Biodiversity
		Strategies and Action Plans for the
		setting of nature conservation and
		restoration targets and for the
		description of the measures to
		achieve these targets.
		Note 2: A monitoring programme is
		in place to evaluate the
		effectiveness of a nature-based
		solution scheme in improving the

Title	Description	Eligible Inputs
		status of the affected water body,
		achieving the conservation and
		restoration targets and in adapting
		to changing climate conditions.
Parametric Insurance	Parametric insurance or insurance	Insurance based on climatic
for mitigating climate	based on climatic indexes are contracts	indexes
risks	that stipulate compensation based on	
	the occurrence of specified climatic	
	events (hurricanes, floods, among	
	others).	
Weather monitoring	Satellite analysis systems and aerial	Early warning systems, software,
and forecast systems	systems have been put in place.	hardware, analysis services,
	Monitoring, control systems and	drones, licenses, and
	warning protocols for early warning	communication equipment,
	actions.	including real-time data collection

8. Sustainable aquaculture production

Table 16 Eligible practices for sustainable aquaculture production

Title	Description	Eligible inputs
	Basic Practice	
Compliance with	Implement actions required to obtain	Inputs required to transform the
agricultural	sustainable agriculture certification from	farm in line with the requirements
standards	Table: List of eligible certification schemes.	for the said certifications
	(Table 5)	
Aquatic animal	The aquatic animal bank project aims to	Costs for Improving Community
bank	restore biodiversity in water sources,	Water Sources, Fry Nursery Cages,
	allowing local communities to catch	Agricultural Materials
	aquatic animals for use. This reduces fishing	
	in natural water sources and conserves	
	species that are important to the	
	ecosystem and at risk of extinction. It also	
	mitigates the impacts of climate change	
	that threaten the survival of certain species	
	in changing environments.	
Biosecurity	Implement biosecurity systems for	Hatcheries, management and
system	aquaculture facilities such as hatcheries,	quarantine facilities, disinfection
	nurseries, and farms to mitigate the risks of	systems, filtration and water
	disease outbreaks and emerging infectious	treatment systems, monitoring
	diseases that are becoming more severe	tools and equipment, and cleaning
	due to climate change.	and sterilization materials.
Closed-system	Closed Recirculating Aquaculture Systems	Greenhouses, pond, heat domes,
aquaculture	(RAS) are a method of farming aquatic	RAS System (Recirculating
technology with	animals in confined space. This approach,	Aquaculture System), Water
recirculating	encompassing both indoor and outdoor	Filtration and Treatment Systems,
water and	RAS, combines with water quality control	Water Quality Testing Equipment
wastewater	through recirculating systems that reuse	
management	water. This helps to reduce water resource	
	consumption and minimizes wastewater	
	discharge into the environment. Consider	
	implementing simple water reuse practices.	

Title	Description	Eligible inputs
Disease control	Reducing the risk of aquatic animal diseases	Scientific instruments for aquatic
and monitoring	in aquaculture farms by enhancing the	animal laboratories, reagents and
in aquaculture	efficiency of disease control and monitoring	chemicals for analysis, and
farms	systems. This involves the establishment of	reporting and monitoring systems.
	laboratories and disease tracking systems to	
	manage potential widespread and severe	
	outbreaks that may be exacerbated by	
	climate change due to global warming.	
Mobile hatchery	Using mobile hatcheries to breed fish in	Costs for Materials and Equipment
	both natural and community water sources	for Mobile Hatcheries
	reduces the need for fuel energy in	
	transporting fry from hatcheries. It also	
	increases the survival rate of fry that can be	
	directly released into the water, helping to	
	restore aquatic resources depleted by	
	overuse and conserve species in these	
	water sources.	
Production of	Producing high-quality microorganisms for	Scientific Materials, Agricultural
microorganisms	aquaculture helps farmers reduce	Materials, Laboratories, Microbial
for biological	production costs by decreasing the use of	Culture Production Center,
aquaculture	drugs and chemicals. It also aids in	Microbial Cultures
	maintaining appropriate water quality,	
	reducing energy costs for water exchange,	
	and lowering hidden costs associated with	
	aquatic animal diseases. Farmers who	
	consistently use these microorganisms	
	achieve greater success in aquaculture and	
	lower the risk of antibiotic-resistant	
	infections.	
	Intermediate Practice	
Energy saving	Using solar cells in aquaculture farms	Install Solar Cell Systems,
and the use of	allows for the generation of electricity from	Equipment Maintenance Services
clean energy	solar energy during the day to power	to improve efficiency, Automatic
(Solar cells)	aeration machines and various electrical	Aerator Control Systems (Smart
	equipment within the farm. This helps	Aerator Control), Install Energy
	farmers significantly reduce energy costs. To	Storage Systems (Batteries),

Title	Description	Eligible inputs
	store solar energy for nighttime use,	Purchase High-Efficiency Electrical
	additional batteries for energy storage are	Equipment to save energy for use
	required. This approach represents a	on the farm
	development in environmentally friendly	
	technology and innovation, reducing	
	reliance on coal energy, which contributes	
	to global warming.	
Improving	Improving aquatic animal breeds using	Greenhouses, Breeding Stock,
aquatic animal	environmental data from the farming	Biosecurity Systems, Water
breeds to	location, such as temperature, salinity, and	Treatment Systems, Breeding Feed,
withstand	disease resistance, helps produce resilient	Aquatic Disease Testing Tools,
environmental	strains that can withstand diseases and	Laboratories, Sterile Natural Feed
conditions	climate changes caused by global warming.	Production Greenhouses, Other
		Production Factors
Integrated multi-	Integrating aquaculture systems by farming	Greenhouses, Ponds, Production
trophic	various species together, such as marine	Factors, Aquatic Species,
aquaculture	fish with seaweed and shellfish, shrimp with	Agricultural Materials, Tools,
(IMTA) system	freshwater snails, or farming shrimp with	Materials and Equipment
	tilapia, and other combinations like grass	
	carp with other plant-eating fish.	
Production and	Improving food production methods and	Capital expenditure for Feed
feeding to	reducing fossil fuel use in feed	Manufacturing: Alternative Energy
produce low-	manufacturing helps lower greenhouse gas	Systems, Clean Energy, Feed
carbon aquatic	emissions. This includes producing low-	Production Equipment, Raw
animals	protein food, using alternative ingredients,	Materials, Feed Production Plants,
	supplementary feed, prebiotics, and	Raw Material Silos, Research
	enhancing feeding methods in aquaculture	Investment, Prototype Factory
	farms through automatic feeders, food	Construction
	intake tracking systems, and growth	Investment Expenses for
	monitoring systems to reduce greenhouse	Aquaculture Farms: Raw Materials,
	gas emissions from aquaculture.	Automatic Feeders, Systems and
		Materials, Equipment, Tools
Promotion of	Practices to ensure the health of aquatic	Knowledge in Vaccine Production
aquatic animal	animals and reduce mortality within farms,	and Immune Stimulators, Scientific
health	such as vaccinating animals, feeding with	Materials and Equipment, Vaccine

Title	Description	Eligible inputs
	immune-boosting additives, or using	Production Centers, Immune
	probiotics during cultivation.	Stimulators and Probiotics
Traceability and	Using traceability systems and certification	Expenditure for Traceability
quality	standards for aquatic products to ensure	Systems, Expenses for Certification,
certification	consumer confidence in purchasing	Inspection, and Compliance,
standards for	products with verified sources and	Expenses for Farm Improvements,
aquatic products	environmental friendliness. This includes	Aquaculture Systems, Waste
	improving production processes for	Treatment Systems
	efficiency and standards to reduce	
	production losses and greenhouse gas	
	emissions, while avoiding harmful chemicals	
	that affect consumers and the	
	environment.	
Transportation	Option 1: Live Aquatic Animal	Aquatic Animal Transport Tanks
of live aquatic	Transport for Aquaculture:	with aeration and temperature
animals	Developing live aquatic animal	control systems, Electric Vehicles
	transport technology to reduce the use	for Transport, Environmentally
	of plastic bags for packing and	Friendly Packaging
	transporting animals by switching to	
	environmentally friendly packaging,	
	such as aerated transport tanks with	
	temperature control systems.	
	Option 2: Live Aquatic Animal	
	Transport for Consumption:	
	Developing live aquatic animal transport	
	technology to control and maintain	
	animal quality by using electric vehicles	
	with temperature control for transport.	
	Advanced Practice	
Aquaculture	Aquaculture insurance covers risks related	Aquatic Product Insurance for
insurance	to diseases and emerging diseases, which	damage caused by aquatic animal
	may be caused by climate change.	diseases, Development of Aquatic
		Insurance Prototypes
Aquaculture	Aquatic animals are sensitive to	Early Warning Systems, Database
warning system	environmental changes. Climate variability	Management Systems, Network
	can cause damage and loss of property	Systems, Computers, Software,

Title	Description	Eligible inputs
	because farmers are unable to anticipate	Hardware, Analytical Services,
	and prepare for potential hazards. The	Drones, Licenses and
	application of various detection systems	Communication Equipment, Real-
	(sensors) to measure parameters affecting	Time Data Collection
	aquaculture, combined with machine	
	learning and artificial intelligence (AI), along	
	with satellite imagery and external data	
	sources, allows for predicting	
	environmental conditions impacting	
	aquaculture. This helps in providing early	
	warnings so that farmers can prepare for	
	and mitigate potential damage.	
Precision	Utilizing IoT technology to connect data	Various Detection Systems
aquaculture	between sensors, devices, and users helps	(Sensors), Electrical Equipment,
system	in controlling aquaculture systems. For	Equipment for System Installation,
	instance, smart aerators, automatic feeders,	Internet of Things (IoT) Technology,
	real-time water quality measurement	Artificial Intelligence (AI) Systems
	devices, and surveillance cameras in	
	aquaculture ponds represent innovations	
	using sensors to monitor real-time changes	
	in water quality. These systems can control	
	aerator operation to ensure optimal	
	performance, with notifications sent via	
	smartphones or sound alarms when oxygen	
	levels or water quality fall below critical	
	thresholds. This optimizes aerator operation	
	to avoid unnecessary energy consumption,	
	thus reducing energy use and costs.	