

Contents

Annex I: General guidance on taxonomy application1
Key taxonomy definitions1
How is activities' alignment aggregated to the company/issuer level?
How to define if different entities and forms of action are aligned with the Taxonomy 2
Annex II: Activities contribution to the objectives of the Taxonomy
Annex III: Guidance on performing a Climate Risk and Vulnerability Assessment (CRVA)
Application of a CRVA14
Guidance on conducting a CRVA16
Template of CRVA checklist

Annex I: General guidance on taxonomy application

This section contains general descriptions of Taxonomy's operating principles and key concepts found throughout the text that are relevant to financial flows. This section does not in any way constitute an instruction for the use of the Taxonomy in Thailand as the actual procedure of its implementation should be determined by relevant regulators.

Please remember that taxonomies of this type as a tool were created for use in the financial market, so many verification processes are tied to financial instruments and their operating principles. For the application of the Taxonomy in other areas, additional clarifications are required and should be provided by the relevant regulator.

Key taxonomy definitions

1. What is revenue?

Revenue or net turnover means the amounts derived from the sale of products and the provision of services after deducting sales rebates and value added tax and other taxes directly linked to turnover. Overall turnover is equivalent to a firm's total revenues over a defined period. Turnover ratios are used by financial analysts to assess a company's efficiency and profitability based on data found in financial statements.

2. What is CapEx?

Capital expenditure (CapEx) is a payment for goods or services recorded or capitalised on the balance sheet instead of expensed on the income statement. Use: Aside from helping investors analyse a company's investment in its existing and new fixed assets, capital expenditures can give an indication of a company's strategy for improving environmental performance and resilience.

3. What is OpEx?

Operating expenses (OpEx) are shorter-term expenses required to meet the ongoing operational costs of running a business. While revenue is an indicator of ongoing operations and activities and is the primary indicator for alignment, where new investment is being made in technology to better align an issuer, then CapEx would be a more appropriate indicator. The use of revenue, CapEx, or OpEx is dependent on the vehicle being financed. In particular,

1

where capital is being extended to fund a particular activity or project, then CapEx would be more appropriate.

4. What is an activity?

When a company offers goods or services, it is performing an economic activity. The universe of economic activities is described using ISIC codes, which cover 21 broad sectors and with four further levels of differentiation. At the fourth level, 615 classes of economic activity are identified. The ISIC codes map directly to the EU's NACE classification system.

5. What is a project?

A project is an individual or collaborative enterprise that is planned to achieve a particular aim. For the purpose of Thailand Taxonomy, a project is a timebound activity or a set of activities that is intended to achieve a desired outcome, usually transforming the activity from not aligned with the Taxonomy into aligned with the Taxonomy.

How is activities' alignment aggregated to the company/issuer level?

At the issuer level, net turnover from aligned activities needs to be aggregated to determine an entity's degree of alignment with the Taxonomy. For example, one activity representing 45% and another representing 15% of issuer/company revenue may be aligned, but an activity representing 40% of revenue may not. In this case, an issuer/company would be determined as having 60% revenue alignment. For projects following completion, the company can claim 100% of the turnover associated with the project as being aligned with the Taxonomy if it meets the technical screening criteria for Green or Amber. During the project timeframe, it is only the project itself that is considered to be aligned with the Taxonomy, so the turnover associated with the project as a ligned until completion.

How to define if different entities and forms of action are aligned with the Taxonomy

- An **activity** (e.g., production of steel or zero-emission vehicles) may be considered aligned with the Taxonomy if
 - If it meets the Technical Screening Criteria and related thresholds defined by the Taxonomy (green or amber category. Renewable Energy Certificates may be employed when operators are unable to supply renewable energy, provided that

these align with the green categories defined by the Thailand Taxonomy. Exceptions apply to certain activities where specific using of such certificates is prohibited.

- None of the **company** operations violate DNSH and MSS requirements, or the company has stated that, at present, some of the DNSH or MSS requirements are not fulfilled, but it has published a plan to remediate these deficiencies within three years.
- A **project** (e.g., retrofitting of the steel factory or construction of the solar power plant) may be considered aligned with the Taxonomy if
 - <u>All</u> major measures of the **project** (not counting supporting activities like accounting) are aligned with either green or amber criteria of one of the activity cards. For example, a power plant that is retrofitting scrubbers or installing carbon capture and storage technology.
 - The project meets the DNSH and MSS requirements.
- Non-financial companies may disclose the proportion of their economic activities that align with the Taxonomy criteria. The translation of environmental performance into financial indicators (revenue/turnover, CapEx and OpEx) allows investors and financial institutions to have clear and comparable data to help them with their investment and financing decisions. The main reporting options for non-financial companies would be:
 - Taxonomy-aligned **revenues** represent the proportion of the net turnover derived from products or services that are from activities that are aligned with the Green or Amber technical screening criteria for at least one of the six environmental objectives of the Taxonomy.
 - Taxonomy-aligned **CapEx** represents the proportion of the capital expenditure of an activity that is Taxonomy-aligned or is part of a credible plan to extend or reach Taxonomy alignment.
 - Taxonomy-aligned **OpEx** represents the proportion of the operating expenditure associated with taxonomy-aligned activities or the CapEx plan. The operating expenditure covers direct non-capitalised costs relating to research and development, renovation measures, short-term lease, maintenance, and other direct expenditures relating to the day-to-day servicing of assets of property, plant and

equipment that are necessary to ensure the continued and effective use of such assets.

- The process below can be followed by financial institutions that wish to calculate the alignment of their **portfolio against the Taxonomy:** ,:
 - After constructing a portfolio of investments, financial institutions should check the alignment of individual companies with different categories of Taxonomy and then construct a weighted average for each category (green, amber, and red). Portfolios with a green or amber alignment greater than 75%¹ would be permitted to identify as a "green" or "transitional" product.
 - For **equity** investments, company revenue is used as the main proxy for equity exposure to Taxonomy-aligned economic activities. In order to calculate total portfolio alignment, the calculation is the weight of the asset within the portfolio multiplied by the proportion of the company revenue, which is eligible and aligned with each Taxonomy alignment classification (Green, Amber, and Red) for inclusion under the Taxonomy.
- For **corporate debt and/or bonds** which are being used to fund Taxonomy-aligned projects, then 100% of the investment can be classed as Taxonomy-aligned where it commits to meeting the technical screening criteria for the environmental objective at the maturity of the project.
- In order to check the alignment of **debt** or **equity**:
 - **Equity investments**. For equity investments, company revenue is used as the main proxy for equity exposure to Taxonomy-aligned economic activities.
 - **Debt capital**. The approach for general debt capital is broadly the same as for equity investments, with revenue being used as a proxy for portfolio exposure to Taxonomy-aligned economic activities, where appropriate. For corporate debt and/or bonds which are being used to fund Taxonomy-aligned projects, then 100% of the investment can be classed as Taxonomy-aligned, where it commits to meeting the technical screening criteria for the environmental objective at the maturity of the project.

Annex II: Activities contribution to the objectives of the Taxonomy

The main environmental objective of the Taxonomy is climate change mitigation (reducing emissions leading to global warming). This is the only task that is well developed in global climate science in terms of technologies to achieve it. However, many of the activities included in the Taxonomy also contribute to other objectives. This table will help users to better navigate this area. It is based on the work¹ of the European Union on defining the contribution of different economic activities to different environmental objectives. In case if there was no guidance on this (for example, in case of agricultural section) – the final decision was made based on the own analysis of the consultants' team.

Important note: this table is only indicative and cannot be used as a basis for financial decisions.

¹ The European Commission [EU], "Commission Delegated Regulation (EU) 2023/2486," Official Journal of the European Union, September 21, 2023, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202302486.

	Climate change	Climate change	Sustainable use	Resource	Pollution	Protection and
	mitigation	adaptation	and protection of	resilience and	prevention and	restoration of
			marine and water	transition to a	control	biodiversity and
			resources	circular economy		ecosystems
		En	ergy sector			
Solar energy generation						
Wind energy generation						
Hydropower generation						
Geothermal power generation						
Bioenergy generation and						
production						
Energy production from natural						
gas						
Marine energy generation						
Electricity generation from						
renewable non-fossil gaseous						
and liquid fuels,						
including green hydrogen						
Cogeneration of heating/cooling						
and power using renewable						
sources of energy						
Production of heating and						
cooling using waste heat						

	Climate change	Climate change	Sustainable use	Resource	Pollution	Protection and
	mitigation	adaptation	and protection of	resilience and	prevention and	restoration of
			marine and water	transition to a	control	biodiversity and
			resources	circular economy		ecosystems
Installation and operation of						
electric heat pumps						
Heating and cooling distribution						
Transmission and distribution						
networks for renewable and						
low-carbon gases, including						
green hydrogen						
Storage of electricity, thermal						
energy and green hydrogen						
Transmission and distribution						
of electricity						
		Transp	ortation sector			
Transport via railways						
Other passenger land transport						
Urban and suburban passenger						
land transport						
Freight transport by road						
Enabling infrastructure for low-						
emission transport						

	Climate change	Climate change	Sustainable use	Resource	Pollution	Protection and
	mitigation	adaptation	and protection of	resilience and	prevention and	restoration of
			marine and water	transition to a	control	biodiversity and
			resources	circular economy		ecosystems
Sea and coastal water transport						
Inland water transport						
Passenger and freight transport						
by air						
		Agric	ulture sector			
Growing of perennial and non-						
perennial crops, incl. cassava,						
corn, mango, pineapples,						
banana etc. ²						
Cultivation of sugarcane						
Cultivation of rice						
Cultivation of rubber trees						
Cultivation of palm oil trees						
Livestock production						
Aquaculture production						
Sustainable forest management						

² For agricultural activities contribution means that at least one practice suggested for implementation under the agricultural criteria can contribute to each of the objectives in the taxonomy.

	Climate change	Climate change	Sustainable use	Resource	Pollution	Protection and
	mitigation	adaptation	and protection of	resilience and	prevention and	restoration of
	5		marine and water	transition to a	control	biodiversity and
			resources	circular economy		ecosystems
Forestry plantation						-
Conservation, restoration, and						
maintenance of natural forests						
		Construction	and real estate secto	br		
Construction of new buildings						
Renovation of the existing						
buildings						
Acquisition or ownership of						
buildings						
Installation, maintenance, and						
repair of special-purpose						
building equipment						
Building demolition and site						
preparation						
Early Warning Systems						
		Manuf	acturing sector	·	·	
Manufacturing of cement						
Manufacturing of aluminium						
Manufacturing of iron and steel						

	Climate change	Climate change	Sustainable use	Resource	Pollution	Protection and
	mitigation	adaptation	and protection of	resilience and	prevention and	restoration of
			marine and water	transition to a	control	biodiversity and
			resources	circular economy		ecosystems
Manufacturing of hydrogen						
Manufacturing of basic						
chemicals						
Manufacturing of plastics in						
primary form						
Manufacturing of batteries						
Manufacturing of renewable						
energy technologies and						
products						
Manufacture of low-carbon						
technologies for transport						
Manufacturing of energy						
efficiency equipment for						
buildings						
Manufacturing of other low-						
carbon technologies						
Capture of CO2						
Transportation of CO2						
Storage of CO2						

	Climate change	Climate change	Sustainable use	Resource	Pollution	Protection and
	mitigation	adaptation	and protection of	resilience and	prevention and	restoration of
			marine and water	transition to a	control	biodiversity and
			resources	circular economy		ecosystems
Utilisation of captures CO2						
Introduction of energy						
efficiency and decarbonisation						
measures in manufacturing						
activities not specified in the						
Thailand Taxonomy						
		Waste ma	anagement sector			
Anaerobic digestion of sewage						
sludge						
Anaerobic digestion or						
composting of bio-waste						
Collection and transport of						
waste						
Depollution and dismantling of						
end-of-life products						
Waste to Energy						

	Climate change	Climate change	Sustainable use	Resource	Pollution	Protection and
	mitigation	adaptation	and protection of	resilience and	prevention and	restoration of
			marine and water	transition to a	control	biodiversity and
			resources	circular economy		ecosystems
Landfill gas capture and						
utilisation						
Remediation of contaminated						
sites and areas						
Remediation of legally n-						
conforming landfills and						
abandoned or illegal waste						
dumps						
Sorting and material recovery						
from n-hazardous waste						
Treatment of hazardous waste						
Construction, extension,						
upgrade, operation and renewal						
of urban wastewater collection						
and treatment						
Construction, extension,						
upgrade and operation of						
centralised wastewater						
collection and treatment						

	Climate change	Climate change	Sustainable use	Resource	Pollution	Protection and
	mitigation	adaptation	and protection of	resilience and	prevention and	restoration of
			marine and water	transition to a	control	biodiversity and
			resources	circular economy		ecosystems
Renewal of centralised						
wastewater collection and						
treatment						
Phosphorus recovery from						
wastewater						

Annex III: Guidance on performing a Climate Risk and Vulnerability Assessment (CRVA)

This annex encompasses CRVA to be considered under the climate change adaptation, as and when activities undergo an assessment for substantial contribution to the objective or do-nosignificant-harm to the objective.

The guidance is based on guidance prepared by the German Environment Agency ³for performing a taxonomy compliant CRVA⁴, based on the principles and framework of ISO 14091.

Terminology	Context
Climate-related hazard	The potential occurrence of natural or human-induced physical events
	and changes which stem from changes to the climate caused by
	anthropogenic GHG emissions. Potential climate-related hazards are listed
	under Table below.
Vulnerability	Encompasses or susceptibility to harm and lack of capacity to cope and
	adapt.
Risk	Under this context, the potential impacts as a result of exposure to hazards
	and level of vulnerability to specific climate-related hazards.
Physical Climate Risk	A physical climate risk can occur to any Activity (or system), where the
	Activity is exposed to and sensitive to a climate-related hazard. For
	example, "potential flooding damage to buildings or infrastructure."

Table 1 Terminology to be used under CRVA⁵

Application of a CRVA

For an activity to demonstrate that it meets the criteria for contribution to the objective or do-no-significant-harm to the objective the following must be considered:

³ German Environment Agency. How to perform a robust CRVA for EU Taxonomy reporting?

Recommendations for Companies. November 2022

⁴ The EU Taxonomy refers to a CRVA as a method for identifying material impacts to the Activity, in line with both chronic and acute climate-related disasters

⁵ The definitions are adapted and derived from the relevant climate adaptation sections of the IPCC AR6 and ISO 14090.

- 1. Physical climate risks that are material to the activity must be identified from those listed in Table 2. This includes the following steps:
 - Screening of the Activity to identify which physical climate risks from the list in Table 1 may affect the performance of the activity during its expected lifetime;
 - II. Where the activity screened is likely to be at risk from one or more of the physical climate risks in Table 2, conduct a risk assessment in line with CRVA check list (see the template after Table 2 to assess the significance of the physical climate risks on the activity; and
 - III. Assess and prioritise adaptation solutions that can reduce the identified physical climate risk.
- 2. Risk assessment must be proportionate to the scale of the activity and its expected lifespan, such that:
 - For activities with a lifespan of less than 10 years, the assessment is performed, at least by using climate projections at the smallest appropriate scale, which may include extrapolated past trends data;
 - II. For all other activities, the assessment is performed using the highest available resolution, state-of-the art climate projections across the existing range of future scenarios⁶ consistent with the expected lifetime of the activity, including at least, 10-to-30-year climate projections scenarios for major investments.

The climate projections and assessment of impacts are based on best practice and available guidance, issued by international bodies, national or regional authorities, standardisation bodies and other sources of equivalent trustworthiness and consider the state-of-the-art science for vulnerability and risk analysis and related methodologies in line with the most

⁶ Future scenarios include Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways RCP2.6, RCP4.5, RCP6.0, and RCP8.5.

recent Intergovernmental Panel on Climate Change reports⁷, scientific peer-reviewed publications, and open source⁸ or paying models.

For existing and new activities using existing physical assets, physical and non-physical solutions ('adaptation solutions') must be identified, assessed, prioritised. An adaptation plan for the implementation of those solutions is to be drawn up accordingly. This implementation plan must cover a timeframe of up to five years and reduce the most important identified physical climate risks that are material to that activity.

For new and existing activities using newly built physical assets, the Activity must integrate adaptation solutions that reduce the most important identified physical climate risks that are material to that activity at the time of design and construction and implement them before the start of operations.

Guidance on conducting a CRVA

In general, there are four main steps that should be included as part of a CRVA:

Step 1: Identify the lifespan of the activity under assessment, and identify the specific components (i.e., factors, processes, materials, etc., of the activity) that would require an investigation under a risk assessment.

Step 2: Screening of climate-related hazards from Table 2 and identify those with most potential risks to the activity and/or objects under assessment.

Step 3: Conduct the risk assessment. For current potential risks, it is recommended to use past climate trends and climate projections based on these trends. For future potential risks, it is recommended to use a range of climate projections based on future scenarios.

• For an activity with a lifespan of less than 10 years may use extrapolated past trends data assessment;

⁷ Assessments Reports on Climate Change: Impacts, Adaptation and Vulnerability, published periodically by the Intergovernmental Panel on Climate Change (IPCC), the United Nations body for assessing the science related to climate change produces, https://www.ipcc.ch/reports/.

⁸ 5 Including, but not necessarily limited to the Copernicus Services managed by the European Commission.

• For an activity with a lifespan of more than 10 years, an assessment of both current and future risks based on modelled data is required.

Step 4: Identify adequate and effective adaptation solutions to reduce the risks that are material to the activity, including: o Identifying a range of possible solutions/measures; and o assessing the different solutions for their costs, benefits, effectiveness for reducing or eliminating the risk, the adaptation efforts, or the level of resilience.

Adaptation solutions must:

- Not adversely affect physical climate risks of other people, of nature, of cultural heritage, of assets and of other activities;
- Not result in any form of maladaptation, including solutions which will not achieve the intended objective or may result in unintended side effects;
- Be consistent with Thailand National Adaptation Plan;
- Must consider the use of nature-based solutions to the extent possible.

Proactive consultations on the proposed activity must be conducted. This ensures that adaptation solutions do not adversely affect the adaptation efforts or the level of resilience to physical climate risks of other stakeholders (directly impacted or interested persons). The consultation process should at least:

- Identify potentially impacted and/or interested persons, assets, heritage, etc.; and
- Communicate, consult, and/or provide for the participation of these persons/institutions ensuring that their concerns, desires, expectations, needs, rights, and opportunities are considered.

In this way, the adaptation solutions will ensure that there are no negative impacts as a result of implementing the activity.

	Temperature related	Wind related	Water related	Solid mass related
Chronic	 Changing temperature (air, freshwater, marine water) Heat stress Temperature variability 	Changing wind patterns	 Changing precipitation patterns and type Precipitation or hydrological variability Ocean acidification Saline intrusion Sea level rise Water stress 	 Coastal erosion Soil degradation Soil erosion Solifluction
Acute	- Heat wave - Wildfire	 Cyclone, hurricane, typhoons Storms (including dust and sandstorms) Tornadoes 	 Drought Heavy precipitation Flood (coastal, fluvial, pluvial, ground water) 	- Landslide - Subsidence

Table 2 Classification of climate-related hazards

Template of CRVA checklist

An example of a climate risk and vulnerability checklist is shown in **Table 3**. This checklist can be used as a template for evidence to be provided to assessors that climate risk and vulnerability of an Activity has been considered.

Step	ltem	Description	Explanation	Status
1A	Lifespan of the	Activity description	What is the proposed	
	activity		Activity?	
1B	equipment and	Equipment and	What equipment and	
	materials	materials description	materials will be used to	
			perform this Activity	
1C		Activity start	When will the Activity start	
			operations?	
1D		Activity end	When will the Activity cease	
			operations (either through	
			deterioration of components	
			or reduced demand for	
			Activity)?	
1E		Operational life >10	Will the operational life of	
		years?	the Activity be more than 10	
			years?:	
			• If no, conduct assessment	
			using current IPCC climate	
			scenarios and trends based	
			on extrapolated current	
			climate data.	
			• If yes, conduct current and	
			future assessment using	
			both IPCC climate scenarios	
			and trends.	
2A	Climate related	Potential climate risks	Identify and list potential	
	hazards	to the Activity	risks to the Activity from	
			Table 2, considering location	
			of the Activity and	
			applicable scenarios and	
			trends as described in 1E	
2B		Evaluate most common	Consider the likelihood of	
		potential risks	the risk based on the	
			location of the Activity.	

Table 3 Template for CRVA checklist

Step	ltem	Description	Explanation	Status
3A	Risk assessment	Projection of climate	If activity has operational life	
		hazards	>10 years, what potential	
			hazards may occur based on	
			using both IPCC climate	
			scenarios and trends?	
3B		Potential impact of	How could climate-related	
		climate related hazards	hazards could affect	
			elements of the Activity?	
			Direct impacts may not	
			always occur; some may	
			also be indirect (or impacts	
			in succession). Where	
			appropriate, use flowchart to	
			map the anticipated risks	
			and impacts from each	
			identified climate-risk	
			hazard.	
3C		Potential impact of	How could climate-related	
		climate related hazards	hazards could affect	
			elements of the Activity?	
			Direct impacts may not	
			always occur; some may	
			also be indirect (or impacts	
			in succession). Where	
			appropriate, use flowchart to	
			map the anticipated risks	
			and impacts from each	
			identified climate-risk	
			hazard.	
4A	Identify	Adaptive solutions	List adequate and effective	
	adequate and		adaptation solutions under	
	effective		identified climate-related	
	adaptation		hazards	
	solutions			